|
MATHEMATICS
Products of spaces and the convergence of sequences
A. A. Gryzlov, R. A. Golovastov, E. S. Bastrykov Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia
Abstract:
By the Hewitt–Marczewski–Pondiczery theorem, the Tychonoff product of $2^\omega$ separable spaces is separable. We continue to explore the problem of the existence in the Tychonoff product $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$ of $2^\omega$ separable spaces a dense countable subset, which does not contain non-trivial convergent sequences. We say that a sequence $\lambda=\{x_n\colon n\in\omega\}$ is simple, if, for every $x_n\in\lambda$, a set $\{n'\in\omega\colon x_{n'}=x_n\}$ is finite. We prove that in the product of separable spaces $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$, such that $Z_\alpha$ $(\alpha\in 2^\omega)$ contains a simple nonconvergent sequence, there is a countable dense set $Q\subseteq\prod\limits_{\alpha\in 2^\omega}Z_\alpha$, which does not contain non-trivial convergent in $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$ sequences.
Keywords:
Tychonoff product, dense set, convergent sequence, independent matrix
Received: 11.07.2023 Accepted: 01.11.2023
Citation:
A. A. Gryzlov, R. A. Golovastov, E. S. Bastrykov, “Products of spaces and the convergence of sequences”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 33:4 (2023), 563–570
Linking options:
https://www.mathnet.ru/eng/vuu868 https://www.mathnet.ru/eng/vuu/v33/i4/p563
|
Statistics & downloads: |
Abstract page: | 91 | Full-text PDF : | 46 | References: | 31 |
|