Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2023, Volume 33, Issue 4, Pages 563–570
DOI: https://doi.org/10.35634/vm230402
(Mi vuu868)
 

MATHEMATICS

Products of spaces and the convergence of sequences

A. A. Gryzlov, R. A. Golovastov, E. S. Bastrykov

Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia
References:
Abstract: By the Hewitt–Marczewski–Pondiczery theorem, the Tychonoff product of $2^\omega$ separable spaces is separable. We continue to explore the problem of the existence in the Tychonoff product $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$ of $2^\omega$ separable spaces a dense countable subset, which does not contain non-trivial convergent sequences. We say that a sequence $\lambda=\{x_n\colon n\in\omega\}$ is simple, if, for every $x_n\in\lambda$, a set $\{n'\in\omega\colon x_{n'}=x_n\}$ is finite. We prove that in the product of separable spaces $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$, such that $Z_\alpha$ $(\alpha\in 2^\omega)$ contains a simple nonconvergent sequence, there is a countable dense set $Q\subseteq\prod\limits_{\alpha\in 2^\omega}Z_\alpha$, which does not contain non-trivial convergent in $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$ sequences.
Keywords: Tychonoff product, dense set, convergent sequence, independent matrix
Received: 11.07.2023
Accepted: 01.11.2023
Bibliographic databases:
Document Type: Article
UDC: 515.122
MSC: 54A25, 54B10
Language: English
Citation: A. A. Gryzlov, R. A. Golovastov, E. S. Bastrykov, “Products of spaces and the convergence of sequences”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 33:4 (2023), 563–570
Citation in format AMSBIB
\Bibitem{GryGolBas23}
\by A.~A.~Gryzlov, R.~A.~Golovastov, E.~S.~Bastrykov
\paper Products of spaces and the convergence of sequences
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2023
\vol 33
\issue 4
\pages 563--570
\mathnet{http://mi.mathnet.ru/vuu868}
\crossref{https://doi.org/10.35634/vm230402}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001145748100008}
Linking options:
  • https://www.mathnet.ru/eng/vuu868
  • https://www.mathnet.ru/eng/vuu/v33/i4/p563
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:91
    Full-text PDF :46
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024