Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2023, Volume 33, Issue 2, Pages 240–258
DOI: https://doi.org/10.35634/vm230204
(Mi vuu847)
 

MATHEMATICS

Stability and local bifurcations of single-mode equilibrium states of the Ginzburg–Landau variational equation

D. A. Kulikov

Demidov Yaroslavl State University, ul. Sovetskaya, 14, Yaroslavl, 150003, Russia
References:
Abstract: One of the versions of the generalized variational Ginzburg-Landau equation is considered, supplemented by periodic boundary conditions. For such a boundary value problem, the question of existence, stability, and local bifurcations of single-mode equilibrium states is studied. It is shown that in the case of a nearly critical threefold zero eigenvalue, in the problem of stability of single-mode spatially inhomogeneous equilibrium states, subcritical bifurcations of two-dimensional invariant tori filled with spatially inhomogeneous equilibrium states are realized. The analysis of the stated problem is based on such methods of the theory of infinite-dimensional dynamical systems as the theory of invariant manifolds and the apparatus of normal forms. Asymptotic formulas are obtained for the solutions that form invariant tori.
Keywords: Ginzburg–Landau variational equation, boundary value problem, stability, bifurcations, asymptotic formulas.
Received: 11.01.2023
Accepted: 10.03.2023
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 37L10, 37L15
Language: Russian
Citation: D. A. Kulikov, “Stability and local bifurcations of single-mode equilibrium states of the Ginzburg–Landau variational equation”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 33:2 (2023), 240–258
Citation in format AMSBIB
\Bibitem{Kul23}
\by D.~A.~Kulikov
\paper Stability and local bifurcations of single-mode equilibrium states of the Ginzburg--Landau variational equation
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2023
\vol 33
\issue 2
\pages 240--258
\mathnet{http://mi.mathnet.ru/vuu847}
\crossref{https://doi.org/10.35634/vm230204}
Linking options:
  • https://www.mathnet.ru/eng/vuu847
  • https://www.mathnet.ru/eng/vuu/v33/i2/p240
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:108
    Full-text PDF :34
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024