|
MATHEMATICS
On the type of the meromorphic function of finite order
M. V. Kabanko Kursk State University, ul. Radishcheva, 33, Kursk,
305000, Russia
Abstract:
Let $f(z)$ be a meromorphic function on the complex plane of finite order $\rho>0$. Let $\rho(r)$ be a proximate order in the sense of Boutroux such that $\limsup\limits_{r\to\infty}\rho(r)=\rho$, $\liminf\limits_{r\to\infty}\rho(r)=\alpha>0$. If $[\alpha]<\alpha\leqslant\rho<[\alpha]+1$ then the types of $T(r,f)$ and $|N|(r,f)$ coincide with respect to $\rho(r)$. If there are integers between $\alpha$ and $\rho$, then the resulting criterion is formulated in terms of the upper density of zeros and poles of the function $f$ and their argument symmetry.
Keywords:
meromorphic function, function order, function type, upper density, argument symmetry.
Received: 14.11.2022 Accepted: 29.05.2023
Citation:
M. V. Kabanko, “On the type of the meromorphic function of finite order”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 33:2 (2023), 212–224
Linking options:
https://www.mathnet.ru/eng/vuu845 https://www.mathnet.ru/eng/vuu/v33/i2/p212
|
Statistics & downloads: |
Abstract page: | 127 | Full-text PDF : | 44 | References: | 34 |
|