Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2023, Volume 33, Issue 2, Pages 197–211
DOI: https://doi.org/10.35634/vm230201
(Mi vuu844)
 

MATHEMATICS

Hitting functions for mixed partitions

A. A. Dzhalilova, M. K. Homidovb

a Turin Polytechnic University, Tashkent, Uzbekistan
b National University of Uzbekistan named after Mirzo Ulugbek, Tashkent, Uzbekistan
References:
Abstract: Let $T_{\rho}$ be an irrational rotation on a unit circle $S^{1}\simeq [0,1)$. Consider the sequence $\{\mathcal{P}_{n}\}$ of increasing partitions on $S^{1}$. Define the hitting times $N_{n}(\mathcal{P}_n;x,y):= \inf\{j\geq 1\mid T^{j}_{\rho}(y)\in P_{n}(x)\}$, where $P_{n}(x)$ is an element of $\mathcal{P}_{n}$ containing $x$. D. Kim and B. Seo in [9] proved that the rescaled hitting times $K_n(\mathcal{Q}_n;x,y):= \frac{\log N_n(\mathcal{Q}_n;x,y)}{n}$ a.e. (with respect to the Lebesgue measure) converge to $\log2$, where the sequence of partitions $\{\mathcal{Q}_n\}$ is associated with chaotic map $f_{2}(x):=2x \bmod 1$. The map $f_{2}(x)$ has positive entropy $\log2$. A natural question is what if the sequence of partitions $\{\mathcal{P}_n\}$ is associated with a map with zero entropy. In present work we study the behavior of $K_n(\tau_n;x,y)$ with the sequence of mixed partitions $\{\tau_{n}\}$ such that $ \mathcal{P}_{n}\cap [0,\frac{1}{2}]$ is associated with map $f_{2}$ and $\mathcal{D}_{n}\cap [\frac{1}{2},1]$ is associated with irrational rotation $T_{\rho}$. It is proved that $K_n(\tau_n;x,y)$ a.e. converges to a piecewise constant function with two values. Also, it is shown that there are some irrational rotations that exhibit different behavior.
Keywords: irrational rotation, hitting time, dynamical partition, limit theorem.
Received: 03.10.2022
Accepted: 10.05.2023
Bibliographic databases:
Document Type: Article
UDC: 517.938
Language: English
Citation: A. A. Dzhalilov, M. K. Homidov, “Hitting functions for mixed partitions”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 33:2 (2023), 197–211
Citation in format AMSBIB
\Bibitem{DzhHom23}
\by A.~A.~Dzhalilov, M.~K.~Homidov
\paper Hitting functions for mixed partitions
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2023
\vol 33
\issue 2
\pages 197--211
\mathnet{http://mi.mathnet.ru/vuu844}
\crossref{https://doi.org/10.35634/vm230201}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001031945400001}
Linking options:
  • https://www.mathnet.ru/eng/vuu844
  • https://www.mathnet.ru/eng/vuu/v33/i2/p197
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:121
    Full-text PDF :32
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024