Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2023, Volume 33, Issue 1, Pages 3–16
DOI: https://doi.org/10.35634/vm230101
(Mi vuu832)
 

MATHEMATICS

Potential theory on an analytic surface

B. I. Abdullaevab, Kh. Q. Kamolova

a Urgench State University, ul. Kh. Alimdjana, 14, Urgench, 220100, Uzbekistan
b V. I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, Khorezm Branch, ul. Kh. Alimdjana, 14, Urgench, 220100, Uzbekistan
References:
Abstract: The work is devoted to the theory of pluripotential on analytic surfaces. The pluripotential theory on the complex space ${\mathbb C}^{n},$ as well as on the Stein complex manifold $X\subset{\mathbb C}^{N}$ (without a singular set) have been studied in enough detail. In this work, we propose a new approach for studying the main objects of potential theory on an analytic set with a non-empty singular (critical) set.
Keywords: analytic set, plurisubharmonic function, pluripolar set, ${\mathcal{P}}$-measure, maximal function.
Received: 04.10.2022
Accepted: 27.12.2022
Bibliographic databases:
Document Type: Article
UDC: 517.55, 517.57
MSC: 32U05, 32U15
Language: Russian
Citation: B. I. Abdullaev, Kh. Q. Kamolov, “Potential theory on an analytic surface”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 33:1 (2023), 3–16
Citation in format AMSBIB
\Bibitem{AbdKam23}
\by B.~I.~Abdullaev, Kh.~Q.~Kamolov
\paper Potential theory on an analytic surface
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2023
\vol 33
\issue 1
\pages 3--16
\mathnet{http://mi.mathnet.ru/vuu832}
\crossref{https://doi.org/10.35634/vm230101}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4573565}
Linking options:
  • https://www.mathnet.ru/eng/vuu832
  • https://www.mathnet.ru/eng/vuu/v33/i1/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:162
    Full-text PDF :45
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024