Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2022, Volume 32, Issue 4, Pages 615–629
DOI: https://doi.org/10.35634/vm220408
(Mi vuu829)
 

This article is cited in 1 scientific paper (total in 1 paper)

MECHANICS

Investigation of the orbital stability of rectilinear motions of roller-racer on a vibrating plane

E. M. Artemovaa, A. A. Kilina, Yu. V. Korobeinikovab

a Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia
b Kalashnikov Izhevsk State Technical University, ul. Studencheskaya, 7, Izhevsk, 426069, Russia
Full-text PDF (513 kB) Citations (1)
References:
Abstract: This paper addresses the problem of a roller-racer rolling on an oscillating plane. Equations of motion of the roller-racer in the form of a system of four nonautonomous differential equations are obtained. Two families of particular solutions are found which correspond to rectilinear motions of the roller-racer along and perpendicular to the plane's oscillations. Numerical estimates are given for the multipliers of solutions corresponding to the motion of the robot along the oscillations. Also, a special case is presented in which it is possible to obtain analytic expressions of the multipliers. In this case, it is shown that the motion along oscillations of a “folded” roller-racer is linearly orbitally stable as it moves with its joint ahead, and that all other motions are unstable. It is shown that, in a linear approximation, the family corresponding to the motion of the robot is perpendicular to the plane's oscillations, that is, it is unstable.
Keywords: roller-racer, nonholonomic constraints, vibrating plane, monodromy matrix, orbital stability.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2022-889
FEWS–2020–0009
FZZN–2020–0011
The work of A.A. Kilin (§1) was performed at the Ural Mathematical Center (Agreement No. 075-02-2022-889). The work of E.M. Artemova (§2.1) was supported by the framework of the state assignment or the Ministry of Science and Higher Education (No. FEWS-2020-0009). The work of Yu.V. Korobeinikova (§2.2) was supported by the framework of the state assignment or the Ministry of Science and Higher Education (No. FZZN-2020-0011).
Received: 17.10.2022
Accepted: 09.12.2022
Bibliographic databases:
Document Type: Article
UDC: 517.933, 517.938
MSC: 37J60, 34D20
Language: Russian
Citation: E. M. Artemova, A. A. Kilin, Yu. V. Korobeinikova, “Investigation of the orbital stability of rectilinear motions of roller-racer on a vibrating plane”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:4 (2022), 615–629
Citation in format AMSBIB
\Bibitem{ArtKilKor22}
\by E.~M.~Artemova, A.~A.~Kilin, Yu.~V.~Korobeinikova
\paper Investigation of the orbital stability of rectilinear motions of roller-racer on a vibrating plane
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2022
\vol 32
\issue 4
\pages 615--629
\mathnet{http://mi.mathnet.ru/vuu829}
\crossref{https://doi.org/10.35634/vm220408}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4534874}
Linking options:
  • https://www.mathnet.ru/eng/vuu829
  • https://www.mathnet.ru/eng/vuu/v32/i4/p615
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:171
    Full-text PDF :59
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024