Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2022, Volume 32, Issue 4, Pages 557–568
DOI: https://doi.org/10.35634/vm220405
(Mi vuu826)
 

MATHEMATICS

Pseudo semi-projective modules and endomorphism rings

N. T. T. Ha

Industrial University of Ho Chi Minh city, 12 Nguyen Van Bao, Go Vap District, Ho Chi Minh city, Vietnam
References:
Abstract: A module $M$ is called pseudo semi-projective if, for all $\alpha,\beta\in \mathrm{End}_R(M)$ with $\mathrm{Im}(\alpha)=\mathrm{Im}(\beta)$, there holds $\alpha\, \mathrm{End}_R(M)=\beta\, \mathrm{End}_R(M)$. In this paper, we study some properties of pseudo semi-projective modules and their endomorphism rings. It is shown that a ring $ R$ is a semilocal ring if and only if each semiprimitive finitely generated right $R$-module is pseudo semi-projective. Moreover, we show that if $M$ is a coretractable pseudo semi-projective module with finite hollow dimension, then $\mathrm{End}_R(M)$ is a semilocal ring and every maximal right ideal of $\mathrm{End}_R(M)$ has the form $\{s \in \mathrm{End}_R(M) | \mathrm{Im}(s) + \mathrm{Ker}(h)\ne M\}$ for some endomorphism $h$ of $M$ with $h(M)$ hollow.
Keywords: pseudo semi-projective module, hollow module, finite hollow dimension, perfect ring.
Received: 09.05.2022
Accepted: 16.11.2022
Bibliographic databases:
Document Type: Article
UDC: 512.553
MSC: 16D80, 16D40, 16D90
Language: English
Citation: N. T. T. Ha, “Pseudo semi-projective modules and endomorphism rings”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:4 (2022), 557–568
Citation in format AMSBIB
\Bibitem{Ha22}
\by N.~T.~T.~Ha
\paper Pseudo semi-projective modules and endomorphism rings
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2022
\vol 32
\issue 4
\pages 557--568
\mathnet{http://mi.mathnet.ru/vuu826}
\crossref{https://doi.org/10.35634/vm220405}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4534871}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000904711300005}
Linking options:
  • https://www.mathnet.ru/eng/vuu826
  • https://www.mathnet.ru/eng/vuu/v32/i4/p557
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:137
    Full-text PDF :64
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024