Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2022, Volume 32, Issue 4, Pages 502–527
DOI: https://doi.org/10.35634/vm220402
(Mi vuu823)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Finite-difference method for solving a multidimensional pseudoparabolic equation with boundary conditions of the third kind

M. Kh. Beshtokov

North-Caucasus Federal University, North-Caucasus Center for Mathematical Research, ul. Pushkina, 1, Stavropol, 355017, Russia
Full-text PDF (362 kB) Citations (1)
References:
Abstract: We study an initial-boundary value problem for a multidimensional pseudoparabolic equation with variable coefficients and boundary conditions of the third kind. The multidimensional pseudoparabolic equation is reduced to an integro-differential equation with a small parameter. It is shown that as the small parameter tends to zero, the solution of the resulting modified problem converges to the solution of the original problem. For an approximate solution of the obtained problem, a locally one-dimensional difference scheme by A. A. Samarsky is constructed. An a priori estimate is obtained by the method of energy inequalities, from which the uniqueness, stability, and convergence of the solution of the locally one-dimensional difference scheme to the solution of the original differential problem follow. For a two-dimensional problem, an algorithm for the numerical solution of the initial-boundary value problem for a pseudoparabolic equation with conditions of the third kind is developed.
Keywords: pseudoparabrolic equation, Hallaire's equation, locally one-dimensional scheme, stability, convergence of difference scheme, sum approximation method.
Received: 26.07.2022
Accepted: 05.10.2022
Bibliographic databases:
Document Type: Article
UDC: 519.63
MSC: 35L35
Language: Russian
Citation: M. Kh. Beshtokov, “Finite-difference method for solving a multidimensional pseudoparabolic equation with boundary conditions of the third kind”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:4 (2022), 502–527
Citation in format AMSBIB
\Bibitem{Bes22}
\by M.~Kh.~Beshtokov
\paper Finite-difference method for solving a multidimensional pseudoparabolic equation with boundary conditions of the third kind
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2022
\vol 32
\issue 4
\pages 502--527
\mathnet{http://mi.mathnet.ru/vuu823}
\crossref{https://doi.org/10.35634/vm220402}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4534868}
Linking options:
  • https://www.mathnet.ru/eng/vuu823
  • https://www.mathnet.ru/eng/vuu/v32/i4/p502
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:184
    Full-text PDF :101
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024