Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2022, Volume 32, Issue 3, Pages 463–485
DOI: https://doi.org/10.35634/vm220308
(Mi vuu821)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Local antimagic chromatic number for the corona product of wheel and null graphs

R. Shankar, M. Ch. Nalliah

Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, VIT, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu, 632014, India
Full-text PDF (242 kB) Citations (1)
References:
Abstract: Let $G=(V,E)$ be a graph of order $p$ and size $q$ having no isolated vertices. A bijection $f\colon E{\rightarrow}\left\{1,2,3,\ldots,q \right\}$ is called a local antimagic labeling if for all $uv\in E$, we have $w(u)\neq w(v)$, the weight $w(u)=\sum_{e\in E(u)}f(e)$, where $E(u)$ is the set of edges incident to $u$. A graph $G$ is local antimagic, if $G$ has a local antimagic labeling. The local antimagic chromatic number $\chi_{la}(G)$ is defined to be the minimum number of colors taken over all colorings of $G$ induced by local antimagic labelings of $G$. In this paper, we completely determine the local antimagic chromatic number for the corona product of wheel and null graphs.
Keywords: local antimagic labeling, local antimagic chromatic number, corona product, wheel graph.
Received: 12.05.2022
Accepted: 03.08.2022
Bibliographic databases:
Document Type: Article
UDC: 519.1
MSC: 05C78, 05C15
Language: English
Citation: R. Shankar, M. Ch. Nalliah, “Local antimagic chromatic number for the corona product of wheel and null graphs”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:3 (2022), 463–485
Citation in format AMSBIB
\Bibitem{ShaNal22}
\by R.~Shankar, M.~Ch.~Nalliah
\paper Local antimagic chromatic number for the corona product of wheel and null graphs
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2022
\vol 32
\issue 3
\pages 463--485
\mathnet{http://mi.mathnet.ru/vuu821}
\crossref{https://doi.org/10.35634/vm220308}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4494038}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000916470800008}
Linking options:
  • https://www.mathnet.ru/eng/vuu821
  • https://www.mathnet.ru/eng/vuu/v32/i3/p463
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024