Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2022, Volume 32, Issue 3, Pages 341–360
DOI: https://doi.org/10.35634/vm220301
(Mi vuu814)
 

This article is cited in 4 scientific papers (total in 4 papers)

MATHEMATICS

On nonlinear metric spaces of functions of bounded variation

V. N. Baranov, V. I. Rodionov

Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia
Full-text PDF (313 kB) Citations (4)
References:
Abstract: In the first part of the paper, the nonlinear metric space $\langle\overline{\rm G}^\infty[a,b],d\rangle$ is defined and studied. It consists of functions defined on the interval $[a,b]$ and taking the values in the extended numeric axis $\overline{\mathbb R}$. For any $x\in\overline{\rm G}^\infty[a,b]$ and $t\in(a,b)$ there are limit numbers $x(t-0),x(t+0) \in\overline{\mathbb R}$ (and numbers $x(a+0),x(b-0)\in\overline{\mathbb R}$). The completeness of the space is proved. It is the closure of the space of step functions in the metric $d$. In the second part of the work, the nonlinear space ${\rm RL}[a,b]$ is defined and studied. Every piecewise smooth function defined on $[a,b]$ is contained in ${\rm RL}[a,b]$. Every function $x\in{\rm RL}[a,b]$ has bounded variation. All one-sided derivatives (with values in the metric space $\langle\overline{\mathbb R},\varrho\rangle$) are defined for it. The function of left-hand derivatives is continuous on the left, and the function of right-hand derivatives is continuous on the right. Both functions extended to the entire interval $[a,b]$ belong to the space $\overline{\rm G}^\infty[a,b]$. In the final part of the paper, two subspaces of the space ${\rm RL}[a,b]$ are defined and studied. In subspaces, promising formulations for the simplest variational problems are stated and discussed.
Keywords: non-linear analysis, non-smooth analysis, bounded variation, one-sided derivative.
Received: 04.02.2022
Accepted: 19.07.2022
Bibliographic databases:
Document Type: Article
UDC: 517.988, 517.518.24
MSC: 49J52, 26A45
Language: Russian
Citation: V. N. Baranov, V. I. Rodionov, “On nonlinear metric spaces of functions of bounded variation”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:3 (2022), 341–360
Citation in format AMSBIB
\Bibitem{BarRod22}
\by V.~N.~Baranov, V.~I.~Rodionov
\paper On nonlinear metric spaces of functions of bounded variation
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2022
\vol 32
\issue 3
\pages 341--360
\mathnet{http://mi.mathnet.ru/vuu814}
\crossref{https://doi.org/10.35634/vm220301}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4494031}
Linking options:
  • https://www.mathnet.ru/eng/vuu814
  • https://www.mathnet.ru/eng/vuu/v32/i3/p341
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:454
    Full-text PDF :75
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024