Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2022, Volume 32, Issue 2, Pages 319–337
DOI: https://doi.org/10.35634/vm220210
(Mi vuu813)
 

MECHANICS

On the exo-planet precession under torqes due to three celestial bodies with the evolution of the satellite's orbit

P. S. Krasil'nikov

Moscow Aviation Institute, Volokolamskoe shosse, 4, Moscow, 125993, Russian Federation
References:
Abstract: We investigate the non-resonant evolution of the axial tilt of hypothetical exo-Earth in the gravitational field of a star, planet's satellite (exo-Moon) and outer planet (exo-Jupiter). The exo-Earth is assumed to be rigid, axially symmetric ($A=B$) and almost spherical. We assume the orbits of the both exo-planets to be Keplerian ellipses with focus in the star, the orbit of exo-Moon to be an evolving Keplerian ellipse with slowly changing of ascending node longitude and periapsis argument.
Assuming the frequencies of the unperturbed orbital elliptical motion to be of the order of unity, we obtain the canonical averaged equations describing the perturbed oscillations of the exo-Moon spin axis. These equations contain parameters changing slowly over time. Using the smallness of the planets' masses relative to the mass of the star, we have obtained simplified equations of oscillations of the exo-Earth spin axis by the small parameter method. Time integration of simplified equations gives the axial tilt of exo-Moon as a function of time. It is shown that the torques from the exo-Jupiter create a secular, long-period oscillation mode in axial tilt with a frequency equals to frequency of unperturbed spin axis precession of the exo-Earth. The impact of the exo-Moon on the evolution of the exo-Earth spin axis is that short-period harmonics appear in the oscillations of the axial tilt. The frequency of such oscillations is close to the precession frequency of the ascending node longitude of the exo-Moon orbit.
We have calculated the evolution of exo-Earth axial tilt for two exo-planetary systems, i. e., for a system similar to the solar system, and for a planetary exo-system 7 Canis Majoris. The effect of destabilization (stabilization) of the exo-Earth tilt oscillations due to the torques exerted by exo-Moon and exo-Jupiter is described.
Keywords: axial tilt of exo-planet, planetary exo-system, averaged equations, effect of destabilization.
Funding agency Grant number
Russian Science Foundation 22-21-00560
The research was carried out at the Moscow Aviation Institute with the financial support of the Russian Science Foundation, project no. 22-21-00560.
Received: 18.05.2022
Accepted: 11.06.2022
Bibliographic databases:
Document Type: Article
UDC: 521.92, 517.928.7
MSC: 70F15, 70K65
Language: Russian
Citation: P. S. Krasil'nikov, “On the exo-planet precession under torqes due to three celestial bodies with the evolution of the satellite's orbit”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:2 (2022), 319–337
Citation in format AMSBIB
\Bibitem{Kra22}
\by P.~S.~Krasil'nikov
\paper On the exo-planet precession under torqes due to three celestial bodies with the evolution of the satellite's orbit
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2022
\vol 32
\issue 2
\pages 319--337
\mathnet{http://mi.mathnet.ru/vuu813}
\crossref{https://doi.org/10.35634/vm220210}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4456922}
Linking options:
  • https://www.mathnet.ru/eng/vuu813
  • https://www.mathnet.ru/eng/vuu/v32/i2/p319
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024