Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2022, Volume 32, Issue 2, Pages 211–227
DOI: https://doi.org/10.35634/vm220204
(Mi vuu807)
 

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

On how to exploit a population given by a difference equation with random parameters

A. A. Rodina, L. I. Rodinabc, A. V. Chernikovac

a Moscow Institute of Physics and Technology, per. Institutskii, 9, Dolgoprudny, 141701, Russia
b National University of Science and Technology MISiS, Leninskii prospect, 4, Moscow, 119049, Russia
c Vladimir State University, ul. Gor’kogo, 87, Vladimir, 600000, Russia
Full-text PDF (426 kB) Citations (3)
References:
Abstract: We consider a model of an exploited homogeneous population given by a difference equation depending on random parameters. In the absence of exploitation, the development of the population is described by the equation
$$ X(k+1)=f\bigl(X(k)\bigr), k=1,2,\ldots, $$
where $X(k)$ is the population size or the amount of bioresources at time $k,$ $f(x)$ is a real differentiable function defined on $I=[0,a]$ such that $f(I)\subseteq I.$ At moments $k=1,2,\ldots$, a random fraction of the resource $\omega(k)\in\omega\subseteq[0,1]$ is extracted from the population. The harvesting process can be stopped when the share of the harvested resource exceeds a certain value of $u(k)\in[0,1)$ to keep as much of the population as possible. Then the share of the extracted resource will be equal to $\ell(k)=\min (\omega(k),u(k)).$ The average temporary benefit $H_*$ from the extraction of the resource is equal to the limit of the arithmetic mean from the amount of extracted resource $X(k)\ell(k)$ at moments $1,2,\ldots,k$ when $k\to\infty.$ We solve the problem of choosing the control of the harvesting process, in which the value of $H_*$ can be estimated from below with probability one, as large a number as possible. Estimates of the average time benefit depend on the properties of the function $f(x)$, determining the dynamics of the population; these estimates are obtained for three classes of equations with $f(x)$, having certain properties. The results of the work are illustrated, by numerical examples using dynamic programming based on, that the process of population exploitation is a Markov decision process.
Keywords: difference equations, equations with random parameters, optimal exploitation, average time profit.
Received: 25.08.2021
Accepted: 28.04.2022
Bibliographic databases:
Document Type: Article
UDC: 517.929, 519.857.3
Language: Russian
Citation: A. A. Rodin, L. I. Rodina, A. V. Chernikova, “On how to exploit a population given by a difference equation with random parameters”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:2 (2022), 211–227
Citation in format AMSBIB
\Bibitem{RodRodChe22}
\by A.~A.~Rodin, L.~I.~Rodina, A.~V.~Chernikova
\paper On how to exploit a population given by a difference equation with random parameters
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2022
\vol 32
\issue 2
\pages 211--227
\mathnet{http://mi.mathnet.ru/vuu807}
\crossref{https://doi.org/10.35634/vm220204}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4456916}
Linking options:
  • https://www.mathnet.ru/eng/vuu807
  • https://www.mathnet.ru/eng/vuu/v32/i2/p211
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:243
    Full-text PDF :106
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024