Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2021, Volume 31, Issue 4, Pages 578–596
DOI: https://doi.org/10.35634/vm210404
(Mi vuu788)
 

This article is cited in 5 scientific papers (total in 5 papers)

MATHEMATICS

Soft rational line integral

S. Acharjeea, D. A. Molodtsovb

a Department of Mathematics, Gauhati University, Guwahati-781014, Assam, India
b Dorodnitsyn Computing Centre of the Russian Academy of Sciences, ul. Vavilova, 40, Moscow, 119333, Russia
Full-text PDF (229 kB) Citations (5)
References:
Abstract: Soft set theory is a new area of mathematics that deals with uncertainties. Applications of soft set theory are widely spread in various areas of science and social science viz. decision making, computer science, pattern recognition, artificial intelligence, etc. The importance of soft set-theoretical versions of mathematical analysis has been felt in several areas of computer science. This paper suggests some concepts of a soft gradient of a function and a soft integral, an analogue of a line integral in classical analysis. The fundamental properties of soft gradients are established. A necessary and sufficient condition is found so that a set can be a subset of the soft gradient of some function. The inclusion of a soft gradient in a soft integral is proved. Semi-additivity and positive uniformity of a soft integral are established. Estimates are obtained for a soft integral and the size of its segment. Semi-additivity with respect to the upper limit of integration is proved. Moreover, this paper enriches the theoretical development of a soft rational line integral and associated areas for better functionality in terms of computing systems.
Keywords: soft rational analysis, soft gradient, soft integral, soft set.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00625
The research of D.A. Molodtsov was carried out with partial support from the Russian Foundation for Basic Research (project 19-01-00625).
Received: 30.10.2020
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 03E99, 91F99
Language: English
Citation: S. Acharjee, D. A. Molodtsov, “Soft rational line integral”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 31:4 (2021), 578–596
Citation in format AMSBIB
\Bibitem{AchMol21}
\by S.~Acharjee, D.~A.~Molodtsov
\paper Soft rational line integral
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2021
\vol 31
\issue 4
\pages 578--596
\mathnet{http://mi.mathnet.ru/vuu788}
\crossref{https://doi.org/10.35634/vm210404}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000738125700004}
Linking options:
  • https://www.mathnet.ru/eng/vuu788
  • https://www.mathnet.ru/eng/vuu/v31/i4/p578
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025