Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2021, Volume 31, Issue 4, Pages 519–535
DOI: https://doi.org/10.35634/vm210401
(Mi vuu785)
 

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

Structure of singular sets of some classes of subharmonic functions

B. I. Abdullaeva, S. A. Imomkulovb, R. A. Sharipova

a Urgench State University, ul. H. Alimjan, 14, Urgench, 220100, Uzbekistan
b Institute of Mathematics named after V. I. Romanovskiy, Academy of Sciences of Uzbekistan, ul. Khodjaev, 29, Tashkent, 100060, Uzbekistan
Full-text PDF (298 kB) Citations (2)
References:
Abstract: In this paper, we survey the recent results on removable singular sets for the classes of $m$-subharmonic ($m-sh$) and strongly $m$-subharmonic ($sh_m$), as well as $\alpha$-subharmonic functions, which are applied to study the singular sets of $sh_{m}$ functions. In particular, for strongly $m$-subharmonic functions from the class $L_{loc}^{p}$, it is proved that a set is a removable singular set if it has zero $C_ {q, s}$-capacity. The proof of this statement is based on the fact that the space of basic functions, supported on the set $D\backslash E$, is dense in the space of test functions defined in the set $D$ on the $L_{q}^{s}$-norm. Similar results in the case of classical (sub)harmonic functions were studied in the works by L. Carleson, E. Dolzhenko, M. Blanchet, S. Gardiner, J. Riihentaus, V. Shapiro, A. Sadullaev and Zh. Yarmetov, B. Abdullaev and S. Imomkulov.
Keywords: subharmonic functions, $m$-subharmonic functions, strongly $m$-subharmonic functions, $\alpha$-subharmonic functions, Borel measure, $C_{q,s}$-capacity, polar set.
Received: 14.07.2021
Bibliographic databases:
Document Type: Article
UDC: 517.559, 517.57
MSC: 32U30, 31C05
Language: Russian
Citation: B. I. Abdullaev, S. A. Imomkulov, R. A. Sharipov, “Structure of singular sets of some classes of subharmonic functions”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 31:4 (2021), 519–535
Citation in format AMSBIB
\Bibitem{AbdImoSha21}
\by B.~I.~Abdullaev, S.~A.~Imomkulov, R.~A.~Sharipov
\paper Structure of singular sets of some classes of subharmonic functions
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2021
\vol 31
\issue 4
\pages 519--535
\mathnet{http://mi.mathnet.ru/vuu785}
\crossref{https://doi.org/10.35634/vm210401}
Linking options:
  • https://www.mathnet.ru/eng/vuu785
  • https://www.mathnet.ru/eng/vuu/v31/i4/p519
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:257
    Full-text PDF :116
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024