Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2021, Volume 31, Issue 3, Pages 424–442
DOI: https://doi.org/10.35634/vm210306
(Mi vuu779)
 

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

Sufficient Turing instability conditions for the Schnakenberg system

S. V. Revinaab, S. A. Lysenkoa

a I. I. Vorovich Institute of Mathematics, Mechanics and Computer Science, Southern Federal University, ul. Mil’chakova, 8 a, Rostov-on-Don, 344090, Russia
b Southern Mathematical Institute, pr. Markusa, 22, Vladikavkaz, 362027, Russia
Full-text PDF (296 kB) Citations (3)
References:
Abstract: A classical reaction–diffusion system, the Schnakenberg system, is under consideration in a bounded domain $\Omega\subset\mathbb{R}^m$ with Neumann boundary conditions. We study diffusion-driven instability of a stationary spatially homogeneous solution of this system, also called the Turing instability, which arises when the diffusion coefficient $d$ changes. An analytical description of the region of necessary and sufficient conditions for the Turing instability in the parameter plane is obtained by analyzing the linearized system in diffusionless and diffusion approximations. It is shown that one of the boundaries of the region of necessary conditions is an envelope of the family of curves that bound the region of sufficient conditions. Moreover, the intersection points of two consecutive curves of this family lie on a straight line whose slope depends on the eigenvalues of the Laplace operator and does not depend on the diffusion coefficient. We find an analytical expression for the critical diffusion coefficient at which the stability of the equilibrium position of the system is lost. We derive conditions under which the set of wavenumbers corresponding to neutral stability modes is countable, finite, or empty. It is shown that the semiaxis $d>1$ can be represented as a countable union of half-intervals with split points expressed in terms of the eigenvalues of the Laplace operator; each half-interval is characterized by the minimum wavenumber of loss of stability.
Keywords: reaction–diffusion systems, Schnakenberg system, Turing space, critical wavenumber.
Received: 05.05.2021
Bibliographic databases:
Document Type: Article
UDC: 517.957
MSC: 35K57
Language: English
Citation: S. V. Revina, S. A. Lysenko, “Sufficient Turing instability conditions for the Schnakenberg system”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 31:3 (2021), 424–442
Citation in format AMSBIB
\Bibitem{RevLys21}
\by S.~V.~Revina, S.~A.~Lysenko
\paper Sufficient Turing instability conditions for the Schnakenberg system
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2021
\vol 31
\issue 3
\pages 424--442
\mathnet{http://mi.mathnet.ru/vuu779}
\crossref{https://doi.org/10.35634/vm210306}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000702444500006}
Linking options:
  • https://www.mathnet.ru/eng/vuu779
  • https://www.mathnet.ru/eng/vuu/v31/i3/p424
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:196
    Full-text PDF :110
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024