Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2021, Volume 31, Issue 2, Pages 265–284
DOI: https://doi.org/10.35634/vm210208
(Mi vuu769)
 

This article is cited in 4 scientific papers (total in 4 papers)

MATHEMATICS

Regularized classical optimality conditions in iterative form for convex optimization problems for distributed Volterra-type systems

V. I. Suminab, M. I. Suminba

a Tambov State University, ul. Internatsionalnaya, 33, Tambov, 392000, Russia
b Nizhnii Novgorod State University, pr. Gagarina, 23, Nizhny Novgorod, 603950, Russia
Full-text PDF (349 kB) Citations (4)
References:
Abstract: We consider the regularization of the classical optimality conditions (COCs) — the Lagrange principle and the Pontryagin maximum principle — in a convex optimal control problem with functional constraints of equality and inequality type. The system to be controlled is given by a general linear functional-operator equation of the second kind in the space $L^m_2$, the main operator of the right-hand side of the equation is assumed to be quasinilpotent. The objective functional of the problem is strongly convex. Obtaining regularized COCs in iterative form is based on the use of the iterative dual regularization method. The main purpose of the regularized Lagrange principle and the Pontryagin maximum principle obtained in the work in iterative form is stable generation of minimizing approximate solutions in the sense of J. Warga. Regularized COCs in iterative form are formulated as existence theorems in the original problem of minimizing approximate solutions. They “overcome” the ill-posedness properties of the COCs and are regularizing algorithms for solving optimization problems. As an illustrative example, we consider an optimal control problem associated with a hyperbolic system of first-order differential equations.
Keywords: convex optimal control, distributed system, functional-operator equation of Volterra type, ill-posedness, iterative regularization, duality, minimizing approximate solution, regularizing operator, Lagrange principle, Pontryagin maximum principle.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00199_а
The study was funded by RFBR, project number 20-01-00199_a.
Received: 30.12.2020
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: V. I. Sumin, M. I. Sumin, “Regularized classical optimality conditions in iterative form for convex optimization problems for distributed Volterra-type systems”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 31:2 (2021), 265–284
Citation in format AMSBIB
\Bibitem{SumSum21}
\by V.~I.~Sumin, M.~I.~Sumin
\paper Regularized classical optimality conditions in iterative form for convex optimization problems for distributed Volterra-type systems
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2021
\vol 31
\issue 2
\pages 265--284
\mathnet{http://mi.mathnet.ru/vuu769}
\crossref{https://doi.org/10.35634/vm210208}
Linking options:
  • https://www.mathnet.ru/eng/vuu769
  • https://www.mathnet.ru/eng/vuu/v31/i2/p265
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024