|
MATHEMATICS
The Boutet de Monvel operators in variable Hölder–Zygmund spaces on $\mathbb{R}^{n}_+$
V. D. Kryakvin, G. P. Omarova I. I. Vorovich Institute of Mathematics, Mechanics, and Computer Science, Southern Federal University, ul. Mil’chakova, 8 a, Rostov-on-Don,
344090, Russia
Abstract:
We consider Green operators from the Boutet de Monvel algebra in the Hölder–Zygmund spaces of variable smoothness on $\overline{\mathbb R}^{n}_+$. The order of smoothness depends on a point in the domain and may take negative values. The sufficient conditions of boundedness of the Boutet de Monvel operators are obtained.
Keywords:
the Boutet de Monvel calculus, Green operator, Hölder–Zygmund space, variable smoothness.
Received: 12.09.2020
Citation:
V. D. Kryakvin, G. P. Omarova, “The Boutet de Monvel operators in variable Hölder–Zygmund spaces on $\mathbb{R}^{n}_+$”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 31:2 (2021), 194–209
Linking options:
https://www.mathnet.ru/eng/vuu764 https://www.mathnet.ru/eng/vuu/v31/i2/p194
|
Statistics & downloads: |
Abstract page: | 167 | Full-text PDF : | 100 | References: | 27 |
|