Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2021, Volume 31, Issue 1, Pages 3–18
DOI: https://doi.org/10.35634/vm210101
(Mi vuu751)
 

This article is cited in 5 scientific papers (total in 5 papers)

MATHEMATICS

On the convergence of the barycentric method in solving internal Dirichlet and Neumann problems in $ \mathbb{R}^2$ for the Helmholtz equation

A. S. Il'inskiia, I. S. Polyanskiib, D. E. Stepanovb

a Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics, GSP-1, Leninskie Gory, Moscow, 119991, Russia
b The Academy of Federal Security Guard Service of the Russian Federation, ul. Priborostroitel'naya, 35, Orel, 302034, Russia
Full-text PDF (267 kB) Citations (5)
References:
Abstract: The application of the barycentric method for the numerical solution of Dirichlet and Neumann problems for the Helmholtz equation in the bounded simply connected domain $\Omega\subset\mathbb{R}^2$ is considered. The main assumption in the solution is to set the $\Omega$ boundary in a piecewise linear representation. A distinctive feature of the barycentric method is the order of formation of a global system of vector basis functions for $\Omega$ via barycentric coordinates. The existence and uniqueness of the solution of Dirichlet and Neumann problems for the Helmholtz equation by the barycentric method are established and the convergence rate estimate is determined. The features of the algorithmic implementation of the method are clarified.
Keywords: internal Dirichlet and Neumann problems, Helmholtz equation, arbitrary polygon, barycentric method, Galerkin method, barycentric coordinates, convergence estimation.
Received: 24.06.2020
Bibliographic databases:
Document Type: Article
UDC: 519.632
MSC: 35J05, 65N12
Language: Russian
Citation: A. S. Il'inskii, I. S. Polyanskii, D. E. Stepanov, “On the convergence of the barycentric method in solving internal Dirichlet and Neumann problems in $ \mathbb{R}^2$ for the Helmholtz equation”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 31:1 (2021), 3–18
Citation in format AMSBIB
\Bibitem{IliPolSte21}
\by A.~S.~Il'inskii, I.~S.~Polyanskii, D.~E.~Stepanov
\paper On the convergence of the barycentric method in solving internal Dirichlet and Neumann problems in $ \mathbb{R}^2$ for the Helmholtz equation
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2021
\vol 31
\issue 1
\pages 3--18
\mathnet{http://mi.mathnet.ru/vuu751}
\crossref{https://doi.org/10.35634/vm210101}
Linking options:
  • https://www.mathnet.ru/eng/vuu751
  • https://www.mathnet.ru/eng/vuu/v31/i1/p3
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025