Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2020, Volume 30, Issue 3, Pages 444–467
DOI: https://doi.org/10.35634/vm200307
(Mi vuu735)
 

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

Filters and linked families of sets

A. G. Chentsovab

a N. N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620108, Russia
b Ural Federal University, ul. Mira, 19, Yekaterinburg, 620002, Russia
Full-text PDF (348 kB) Citations (3)
References:
Abstract: Properties of ultrafilters (u/f) and maximal linked systems (MLS) on the widely understood measurable space (MS) and representations of linked (not necessarily maximal) families and filters on this MS are investigated. Conditions realizing maximality of linked families (systems) and natural representations for bitopological spaces (BTS) of u/f and MLS are established. Equipments of sets of linked families and filters corresponding to Wallman and Stone schemes are studied; the connection of these equipments with analogous equipments (with topologies) for u/f and MLS leading to above-mentioned BTS is studied too. Properties of linked family products for two (widely understood) MS are investigated. It is shown that MLS on the $\pi$-system product (that is, on the family of «measurable» rectangles) are limited to products of corresponding MLS on initial spaces.
Keywords: maximal linked system, family of sets, topology, ultrafilter.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00410_а
The study was funded by RFBR, project number 18-01-00410.
Received: 03.08.2020
Bibliographic databases:
Document Type: Article
UDC: 519.6
MSC: 93C83
Language: Russian
Citation: A. G. Chentsov, “Filters and linked families of sets”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:3 (2020), 444–467
Citation in format AMSBIB
\Bibitem{Che20}
\by A.~G.~Chentsov
\paper Filters and linked families of sets
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2020
\vol 30
\issue 3
\pages 444--467
\mathnet{http://mi.mathnet.ru/vuu735}
\crossref{https://doi.org/10.35634/vm200307}
Linking options:
  • https://www.mathnet.ru/eng/vuu735
  • https://www.mathnet.ru/eng/vuu/v30/i3/p444
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:310
    Full-text PDF :158
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024