Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2020, Volume 30, Issue 2, Pages 237–248
DOI: https://doi.org/10.35634/vm200207
(Mi vuu722)
 

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

Spectral properties of the Sturm–Liouville operator with a spectral parameter quadratically included in the boundary condition

L. I. Mammadovaa, I. M. Nabievbcd

a Azerbaijan State Oil and Industry University, pr. Azadlig, 20, Baku, AZ1010, Azerbaijan
b Baku State University, ul. Z. Khalilova, 23, Baku, AZ1148, Azerbaijan
c Khazar University, ul. Mahsati, 11, Baku, AZ1096, Azerbaijan
d Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, ul. B. Vahabzadeh, 9, Baku, AZ1141, Azerbaijan
Full-text PDF (193 kB) Citations (3)
References:
Abstract: The article considers the Sturm–Liouville operator with a real quadratically integrable potential. Boundary conditions are non-separated. One of these boundary conditions includes the quadratic function of the spectral parameter. Some spectral properties of the operator are studied. It is proves that eigenvalues are real and non-zero and there are no associated functions to the eigenfunctions. An asymptotic formula for the spectrum of the operator is derived, and a representation of the characteristic function as an infinite product is obtained. The results of the paper play an important role in solving inverse problems of spectral analysis for differential operators.
Keywords: Sturm-Liouville operator, non-separated boundary conditions, eigenvalues, infinite product.
Funding agency Grant number
Фонд развития науки при Президенте Азербайджанской Республики EİF/MQM/Elm-Tehsil-1-2016-1(26)-71/05/1
This work was supported by the Science Development Fund of the President of the Azerbaijan Republic. Grant No. EİF/MQM/Elm-Tehsil-1-2016-1(26)-71/05/1.
Received: 07.11.2019
Bibliographic databases:
Document Type: Article
UDC: 517.98
MSC: 34A30
Language: Russian
Citation: L. I. Mammadova, I. M. Nabiev, “Spectral properties of the Sturm–Liouville operator with a spectral parameter quadratically included in the boundary condition”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:2 (2020), 237–248
Citation in format AMSBIB
\Bibitem{MamNab20}
\by L.~I.~Mammadova, I.~M.~Nabiev
\paper Spectral properties of the Sturm--Liouville operator with a spectral parameter quadratically included in the boundary condition
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2020
\vol 30
\issue 2
\pages 237--248
\mathnet{http://mi.mathnet.ru/vuu722}
\crossref{https://doi.org/10.35634/vm200207}
Linking options:
  • https://www.mathnet.ru/eng/vuu722
  • https://www.mathnet.ru/eng/vuu/v30/i2/p237
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:285
    Full-text PDF :156
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024