Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2020, Volume 30, Issue 2, Pages 221–236
DOI: https://doi.org/10.35634/vm200206
(Mi vuu721)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

The criterion of uniform global attainability of periodic systems

A. A. Kozlov

Polotsk State University, ul. Blokhina, 29, Novopolotsk, 211440, Belarus
Full-text PDF (264 kB) Citations (1)
References:
Abstract: We consider a linear time-varying control system
\begin{equation} \dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\in \mathbb{R} \end{equation}
with piecewise continuous and bounded $\omega$-periodic coefficient matrices $A (\cdot)$ and $B (\cdot).$ We construct control of the system $(1)$ as a linear feedback $u=U(t)x$ with piecewise continuous and bounded matrix function $U(t)$, $t\in \mathbb{R}$. For the closed-loop system
\begin{equation} \dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\in \mathbb{R}, \end{equation}
the conditions of its uniform global attainability are studied. The latest property of the system (2) means existence of matrix $U(t)$, $t\in \mathbb{R}$, ensuring equalities $X_U((k+1)T,kT)=H_k$ for the state-transition matrix $X_U(t,s)$ of the system (2) with fixed $T>0$ and arbitrary $k\in\mathbb{Z}$, $\det H_k>0$. The problem is solved under the assumption of uniform complete controllability (by Kalman) of the system (1), corresponding to the closed-loop system (2), i.e. assuming the existence of such numbers $\sigma>0$ and $\alpha_i>0,$ $i=\overline{1,4}$, that for any number $t_0\in\mathbb{R}$ and vector $\xi\in \mathbb{R}^n$ the following inequalities hold:
$$\alpha_1\|\xi\|^2\leqslant \xi^*\int\nolimits_{t_0}^{t_0+\sigma}X(t_0,s)B(s)B^*(s)X^*(t_0,s)\,ds\,\xi\leqslant\alpha_2\|\xi\|^2,$$

$$\alpha_3\|\xi\|^2\leqslant\xi^*\int\nolimits_{t_0}^{t_0+\sigma}X(t_0+\sigma,s)B(s)B^*(s)X^*(t_0+\sigma,s)\,ds\,\xi\leqslant\alpha_4 \|\xi\|^2,$$
where $X(t,s)$ is the state-transition matrix of linear system (1) with $u(t)\equiv0.$ It is proved that the property of uniform complete controllability (by Kalman) of the periodic system (1) is a necessary and sufficient condition of uniform global attainability of the corresponding system (2).
Keywords: linear control system with periodic coefficients, uniform complete controllability, uniform global attainability.
Funding agency Grant number
National Academy of Sciences of Belarus, Ministry of Education of the Republic of Belarus
The work was completed within the framework of State program of scientific research of the Republic of Belarus “Convergence - 2020”' (subprogram 1, task 1.2.01).
Received: 30.08.2019
Bibliographic databases:
Document Type: Article
UDC: 517.926, 517.977
MSC: 34D08, 34H05, 93C15
Language: Russian
Citation: A. A. Kozlov, “The criterion of uniform global attainability of periodic systems”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:2 (2020), 221–236
Citation in format AMSBIB
\Bibitem{Koz20}
\by A.~A.~Kozlov
\paper The criterion of uniform global attainability of periodic systems
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2020
\vol 30
\issue 2
\pages 221--236
\mathnet{http://mi.mathnet.ru/vuu721}
\crossref{https://doi.org/10.35634/vm200206}
Linking options:
  • https://www.mathnet.ru/eng/vuu721
  • https://www.mathnet.ru/eng/vuu/v30/i2/p221
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:182
    Full-text PDF :99
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024