Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2020, Volume 30, Issue 2, Pages 176–188
DOI: https://doi.org/10.35634/vm200203
(Mi vuu718)
 

This article is cited in 5 scientific papers (total in 5 papers)

MATHEMATICS

Difference derivative for an integro-differential nonlinear Volterra equation

H. Guebbaia, S. Lemitab, S. Segnia, W. Merchelac

a Department of Mathematics, University 8 Mai 1945, BP 401, Guelma, 24000, Algeria
b Ecole Normale Supérieure de Ouargla, Cité Ennacer, Ouargla, 30000, Algeria
c Derzhavin Tambov State University, ul. Internatsional'naya, 33, Tambov, 392000, Russia
Full-text PDF (178 kB) Citations (5)
References:
Abstract: In this article, we propose a new numerical approximation method to deal with the unique solution of the nonlinear integro-differential Volterra equation. We are interested in a very particular form of this equation, in which the derivative of the sought solution appears under the integral sign in a nonlinear manner. Our vision is based on two different approaches: We use the Nyström method to transform the integral into a finite sum using a numerical integration formula, then we use the numerical backward difference derivative method to approach the derivative of our solution. This collocation between two different methods, the first outcome of the numerical processing of integral equations and the second outcome of the numerical processing of differential equations, gives a new nonlinear system for approaching the solution of our equation. We show that the system has a unique solution and that this numerical solution converges perfectly to our solution. A section is dedicated to numerical tests, in which we show the effectiveness of our new vision compared to two methods based only on numerical integration.
Keywords: Volterra integro-differential equation, nonlinear equation, fixed point, numerical derivative, Nyström method.
Received: 17.01.2020
Bibliographic databases:
Document Type: Article
UDC: 517.988
MSC: 45D05, 45J99, 65R20
Language: English
Citation: H. Guebbai, S. Lemita, S. Segni, W. Merchela, “Difference derivative for an integro-differential nonlinear Volterra equation”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:2 (2020), 176–188
Citation in format AMSBIB
\Bibitem{GueLemSeg20}
\by H.~Guebbai, S.~Lemita, S.~Segni, W.~Merchela
\paper Difference derivative for an integro-differential nonlinear Volterra equation
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2020
\vol 30
\issue 2
\pages 176--188
\mathnet{http://mi.mathnet.ru/vuu718}
\crossref{https://doi.org/10.35634/vm200203}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000556724800003}
Linking options:
  • https://www.mathnet.ru/eng/vuu718
  • https://www.mathnet.ru/eng/vuu/v30/i2/p176
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:215
    Full-text PDF :129
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024