Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2019, Volume 29, Issue 4, Pages 532–547
DOI: https://doi.org/10.20537/vm190405
(Mi vuu699)
 

MATHEMATICS

Analytical embedding of three-dimensional Helmholtz-type geometries

V. A. Kyrov

Gorno-Altaisk State University, ul. Lenkina, 1, Gorno-Altaisk, 649000, Russia
References:
Abstract: For modern geometry, the study of maximum mobility geometries is important. The maximum mobility for $n$-dimensional geometry given by the function $f$ of a pair of points means the existence of an $n(n+1)/2$-dimensional transformation group, which leaves this function invariant. Many geometries of maximum mobility are known (Euclidean, symplectic, Lobachevsky, etc.), but there is no complete classification of such geometries. In this article, the method of embedding solves one of these classification problems. The essence of this method is as follows: from the function of a pair of points $ g $ of three-dimensional geometry, we find all non-degenerate functions $f$ of a pair of points of four-dimensional geometries that are invariants of the Lie group of transformations of dimension $10$. In this article, $g$ are non-degenerate functions of a pair of points of two Helmholtz three-dimensional geometries:
$$g = 2\ln(x_i-x_j) + \dfrac{y_i-y_j}{x_i-x_j} + 2z_i + 2z_j, $$

$$\ln [(x_i-x_j)^2 + (y_i-y_j)^2] + 2\gamma\,\mathrm{arctg}\,\dfrac{y_i-y_j}{x_i-x_j} + 2z_i + 2z_j. $$
These geometries are locally maximally mobile, that is, their groups of motions are six-dimensional. The problem solved in this work is reduced to solving special functional equations by analytical methods, the solutions of which are sought in the form of Taylor series. For searching various options, the math software package Maple 15 is used. As a result, only degenerate functions of a pair of points are obtained.
Keywords: functional equation, function of a pair of points, group of motions, geometry of maximum mobility, Helmholtz geometry.
Received: 04.07.2019
Bibliographic databases:
Document Type: Article
UDC: 517.912, 514.1
MSC: 39A05, 39B05
Language: Russian
Citation: V. A. Kyrov, “Analytical embedding of three-dimensional Helmholtz-type geometries”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:4 (2019), 532–547
Citation in format AMSBIB
\Bibitem{Kyr19}
\by V.~A.~Kyrov
\paper Analytical embedding of three-dimensional Helmholtz-type geometries
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2019
\vol 29
\issue 4
\pages 532--547
\mathnet{http://mi.mathnet.ru/vuu699}
\crossref{https://doi.org/10.20537/vm190405}
Linking options:
  • https://www.mathnet.ru/eng/vuu699
  • https://www.mathnet.ru/eng/vuu/v29/i4/p532
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:322
    Full-text PDF :125
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024