Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2019, Volume 29, Issue 4, Pages 483–500
DOI: https://doi.org/10.20537/vm190402
(Mi vuu696)
 

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

Application of extreme sub- and epiarguments, convex and concave envelopes to search for global extrema

O. E. Galkin, S. Yu. Galkina

National Research University Higher School of Economics, ul. Bolshaya Pecherskaya, 25/12, Nizhni Novgorod, 603155, Russia
Full-text PDF (375 kB) Citations (2)
References:
Abstract: For real-valued functions $f$, defined on subsets of real linear spaces, the notions of extreme subarguments, extreme epiarguments, natural convex $\check{f}$ and natural concave $\hat{f}$ envelopes are introduced. It is shown that for any strictly convex function $g$, any point of the global maximum of the function $f+g$ is an extreme subargument for the function $f$. A similar result is obtained for functions of the form $f/v + g$. Based on these results, a method is proposed, that facilitates the search for global extrema of functions in some cases. It is proved that under certain conditions the functions $f/v+g$ and $\hat{f}/v+g$ have the same global maximum and the same points of the global maximum. Necessary and sufficient conditions for the naturalness of the convex envelope of function are given. A sufficient condition for the invariance of values of the concave envelope $\hat{f}$ during narrowing the domain of $f$ is established. Extreme sub- and epiarguments for continuous nowhere differentiable Gray-Takagi function $K(x)$ of Kobayashi on the segment $[0;1]$ are found. Moreover, the global extrema of the function $K(x)/\cos{x}$ and the global maximum of the function $K(x)-\sqrt{x(1-x)}$ on $[0;1]$ are calculated. The article is provided with examples and graphic illustrations.
Keywords: nondifferentiable optimization, extreme subarguments (subabscissae) and epiarguments (epiabscissae) of function, natural convex and concave envelopes of function, Gray Takagi function of Kobayashi.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1931
Russian Foundation for Basic Research 19-07-00782
Sections 1 and 2 of the study were partially supported by Laboratory of Dynamical Systems and Applications NRU HSE, of the Ministry of Science and Higher Education of the RF, grant agreement No. 075-15-2019-1931; section 3 of the study was funded by RFBR, project number 19-07-00782.
Received: 16.09.2019
Bibliographic databases:
Document Type: Article
UDC: 517.518.244, 519.6
Language: Russian
Citation: O. E. Galkin, S. Yu. Galkina, “Application of extreme sub- and epiarguments, convex and concave envelopes to search for global extrema”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:4 (2019), 483–500
Citation in format AMSBIB
\Bibitem{GalGal19}
\by O.~E.~Galkin, S.~Yu.~Galkina
\paper Application of extreme sub- and epiarguments, convex and concave envelopes to search for global extrema
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2019
\vol 29
\issue 4
\pages 483--500
\mathnet{http://mi.mathnet.ru/vuu696}
\crossref{https://doi.org/10.20537/vm190402}
Linking options:
  • https://www.mathnet.ru/eng/vuu696
  • https://www.mathnet.ru/eng/vuu/v29/i4/p483
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024