Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2019, Volume 29, Issue 3, Pages 341–350
DOI: https://doi.org/10.20537/vm190305
(Mi vuu687)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

The numerical solution of a nonlocal boundary value problem for an ordinary second-order differential equation by the finite difference method

P. K. Pandey

Department of Mathematics, University of Delhi, Dyal Singh College, Lodhi Road, New Delhi, 110003, India
Full-text PDF (153 kB) Citations (1)
References:
Abstract: In the article a numerical technique based on the finite difference method is proposed for the approximate solution of a second order nonlocal boundary value problem for ordinary differential equations. It is clear that a bridge designed with two support points at each end point leads to a standard two-point local boundary value condition, and a bridge contrived with multi-point supports corresponds to a multi-point boundary value condition. At the same time if non-local boundary conditions can be set up near each endpoint of a multi-point support bridge, a two-point nonlocal boundary condition arises. The computational results for the nonlinear model problem are presented to validate the proposed idea. The effect of parameters variation on the convergence of the proposed method is analyzed.
Keywords: second-order boundary value problem, finite difference method, integral boundary conditions, parameters and convergence.
Received: 11.05.2019
Bibliographic databases:
Document Type: Article
UDC: 519.624
MSC: 65L10, 65L12
Language: English
Citation: P. K. Pandey, “The numerical solution of a nonlocal boundary value problem for an ordinary second-order differential equation by the finite difference method”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:3 (2019), 341–350
Citation in format AMSBIB
\Bibitem{Pan19}
\by P.~K.~Pandey
\paper The numerical solution of a nonlocal boundary value problem for an ordinary second-order differential equation by the finite difference method
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2019
\vol 29
\issue 3
\pages 341--350
\mathnet{http://mi.mathnet.ru/vuu687}
\crossref{https://doi.org/10.20537/vm190305}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000493891400005}
Linking options:
  • https://www.mathnet.ru/eng/vuu687
  • https://www.mathnet.ru/eng/vuu/v29/i3/p341
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:302
    Full-text PDF :183
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024