Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2019, Volume 29, Issue 3, Pages 301–311
DOI: https://doi.org/10.20537/vm190301
(Mi vuu683)
 

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

On the conditions of proportional local assignability of the Lyapunov spectrum of a linear discrete-time system

I. N. Banshchikovaa, E. K. Makarovb, S. N. Popovaa

a Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia
b Institute of Mathematics, National Academy of Sciences of Belarus, ul. Surganova, 11, Minsk, 220072, Belarus
Full-text PDF (182 kB) Citations (2)
References:
Abstract: We consider a problem of assigning the Lyapunov spectrum for a linear control discrete-time system
\begin{equation} x(m+1)=A(m)x(m)+B(m)u(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n},\ u\in\mathbb R^{k}, \tag{1} \end{equation}
in a small neighborhood of the Lyapunov spectrum of the free system
\begin{equation} x(m+1)=A(m)x(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n}, \tag{2} \end{equation}
by means of linear feedback $u(m)=U(m)x(m)$. We assume that the norm of the feedback matrix $U(\cdot)$ satisfies the Lipschitz estimate with respect to the required shift of the Lyapunov spectrum. This property is called proportional local assignability of the Lyapunov spectrum of the closed-loop system
\begin{equation} x(m+1)=\bigl(A(m)+B(m)U(m)\bigr)x(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n}. \tag{3} \end{equation}
We previously proved that uniform complete controllability of system (1) and stability of the Lyapunov spectrum of free system (2) are sufficient conditions for proportional local assignability of the Lyapunov spectrum of closed-loop system (3). In this paper we give an example demonstrating that these conditions are not necessary.
Keywords: linear discrete-time system, Lyapunov exponents, сontrollability, stabilizability.
Funding agency Grant number
Russian Foundation for Basic Research 18-51-41005_Узб_т
The studies of the first and third authors was funded by RFBR, project number 18-51-41005.
Received: 22.07.2019
Bibliographic databases:
Document Type: Article
UDC: 517.962.22, 517.977
MSC: 93B55, 39A06, 39A22
Language: Russian
Citation: I. N. Banshchikova, E. K. Makarov, S. N. Popova, “On the conditions of proportional local assignability of the Lyapunov spectrum of a linear discrete-time system”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:3 (2019), 301–311
Citation in format AMSBIB
\Bibitem{BanMakPop19}
\by I.~N.~Banshchikova, E.~K.~Makarov, S.~N.~Popova
\paper On the conditions of proportional local assignability of the Lyapunov spectrum of a linear discrete-time system
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2019
\vol 29
\issue 3
\pages 301--311
\mathnet{http://mi.mathnet.ru/vuu683}
\crossref{https://doi.org/10.20537/vm190301}
Linking options:
  • https://www.mathnet.ru/eng/vuu683
  • https://www.mathnet.ru/eng/vuu/v29/i3/p301
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:341
    Full-text PDF :157
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024