Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2019, Volume 29, Issue 2, Pages 183–196
DOI: https://doi.org/10.20537/vm190204
(Mi vuu675)
 

This article is cited in 4 scientific papers (total in 4 papers)

MATHEMATICS

Basis property of a system of eigenfunctions of a second-order differential operator with involution

A. A. Sarsenbia, B. Kh. Turmetovb

a M. Auezov South Kazakhstan State University, pr. Tauke-Khana, 5, Shymkent, 160012, Kazakhstan
b Khoja Akhmet Yassawi International Kazakh-Turkish University, pr. B. Sattarkhanova, 29, Turkistan, 160200, Kazakhstan
Full-text PDF (210 kB) Citations (4)
References:
Abstract: In the present paper we study the spectral problem for the second-order differential operators with involution and boundary conditions of Dirichlet type. The Green's function of this boundary problem is constructed. Uniform estimates of the Green's functions for the boundary value problems considered are obtained. The equiconvergence of eigenfunction expansions of two second-order differential operators with involution and boundary conditions of Dirichlet type for any function in $L_{2}(-1,1)$ is established. We use an integral method based on the application of the Green's function of a differential operator with involution and spectral parameter. As a corollary from the equiconvergence theorem, it is proved that the eigenfunctions of the spectral problem form the basis in $L_{2}(-1,1)$ for any continuous complex-valued coefficient $q(x)$.
Keywords: differential equation with involution, Green's function, eigenfunction expansions, basis.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan AP05131225
This work supported by the Science Committee of the Ministry of Education and Science of the Kazakhstan Republic, project AP05131225.
Received: 09.02.2019
Bibliographic databases:
Document Type: Article
UDC: 517.927.25
MSC: 35K20, 34L10
Language: Russian
Citation: A. A. Sarsenbi, B. Kh. Turmetov, “Basis property of a system of eigenfunctions of a second-order differential operator with involution”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:2 (2019), 183–196
Citation in format AMSBIB
\Bibitem{SarTur19}
\by A.~A.~Sarsenbi, B.~Kh.~Turmetov
\paper Basis property of a system of eigenfunctions of a second-order differential operator with involution
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2019
\vol 29
\issue 2
\pages 183--196
\mathnet{http://mi.mathnet.ru/vuu675}
\crossref{https://doi.org/10.20537/vm190204}
\elib{https://elibrary.ru/item.asp?id=39136243}
Linking options:
  • https://www.mathnet.ru/eng/vuu675
  • https://www.mathnet.ru/eng/vuu/v29/i2/p183
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:489
    Full-text PDF :260
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024