Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2019, Volume 29, Issue 2, Pages 135–152
DOI: https://doi.org/10.20537/vm190201
(Mi vuu672)
 

This article is cited in 4 scientific papers (total in 4 papers)

MATHEMATICS

On the extension of a Rieman–Stieltjes integral

V. Ya. Derr

Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia
Full-text PDF (251 kB) Citations (4)
References:
Abstract: In this paper, the properties of the regular functions and the so-called $\sigma$-continuous functions (i.e., the bounded functions for which the set of discontinuity points is at most countable) are studied. It is shown that the $\sigma$-continuous functions are Riemann–Stieltjes integrable with respect to continuous functions of bounded variation. Helly's limit theorem for such functions is also proved. Moreover, Riemann–Stieltjes integration of $\sigma$-continuous functions with respect to arbitrary functions of bounded variation is considered. To this end, a $(*)$-integral is introduced. This integral consists of two terms: (i) the classical Riemann–Stieltjes integral with respect to the continuous part of a function of bounded variation, and (ii) the sum of the products of an integrand by the jumps of an integrator. In other words, the $(*)$-integral makes it possible to consider a Riemann–Stieltjes integral with a discontinuous function as an integrand or an integrator. The properties of the (*)-integral are studied. In particular, a formula for integration by parts, an inversion of the order of the integration theorem, and all limit theorems necessary in applications, including a limit theorem of Helly's type, are proved.
Keywords: functions of bounded variation, regulated functions, $\sigma$-continuous functions, Rieman–Stieltjes integral, $(*)$-integral.
Received: 18.03.2019
Bibliographic databases:
Document Type: Article
UDC: 517.518.126
MSC: 26B30, 26A42
Language: Russian
Citation: V. Ya. Derr, “On the extension of a Rieman–Stieltjes integral”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:2 (2019), 135–152
Citation in format AMSBIB
\Bibitem{Der19}
\by V.~Ya.~Derr
\paper On the extension of a Rieman--Stieltjes integral
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2019
\vol 29
\issue 2
\pages 135--152
\mathnet{http://mi.mathnet.ru/vuu672}
\crossref{https://doi.org/10.20537/vm190201}
\elib{https://elibrary.ru/item.asp?id=39136239}
Linking options:
  • https://www.mathnet.ru/eng/vuu672
  • https://www.mathnet.ru/eng/vuu/v29/i2/p135
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:508
    Full-text PDF :238
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024