Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2019, Volume 29, Issue 1, Pages 73–83
DOI: https://doi.org/10.20537/vm190107
(Mi vuu667)
 

This article is cited in 1 scientific paper (total in 1 paper)

MECHANICS

On generalized N. Kovalevski equations in two problems of rigid body dynamics

A. V. Zyza

Donetsk National University, ul. Universitetskaya, 24, Donetsk, 83001, Ukraine
Full-text PDF (184 kB) Citations (1)
References:
Abstract: In this paper we consider the reduction of Kirchhoff–Poisson equations related to the problem of rigid body motion under the action of potential and gyroscopic forces and also equations of the problem of rigid body motion taking into account the Barnett–London effect. For the above-mentioned problems, we obtain analogues of N. Kovalevski equations. In addition, for the above-mentioned problems we obtain two new particular solutions to the polynomial class of Steklov–Kovalevski–Goryachev reduced differential equations. The polynomial solution of the problem of gyrostat motion under the action of potential and gyroscopic forces is characterized by the following property: the squares of the second and the third vector component of angular velocity are quadratic polynomials of the first vector component that is an elliptic function of time. A polynomial solution of the equation of rigid body motion in a magnetic field (taking into account the Barnett–London effect) is characterized by the fact that the square of the second vector component of the angular velocity is the second-degree polynomial, while the square of the third component is the fourth-degree polynomial of the first vector component. The former is found as a result of an elliptic integral inversion.
Keywords: Kirchhoff–Poisson equation, Euler–Poisson equation, N. Kovalevski equation, polynomial solutions, Barnett–London effect.
Received: 23.02.2019
Bibliographic databases:
Document Type: Article
UDC: 531.38
MSC: 70E05, 70E17, 70E40
Language: Russian
Citation: A. V. Zyza, “On generalized N. Kovalevski equations in two problems of rigid body dynamics”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:1 (2019), 73–83
Citation in format AMSBIB
\Bibitem{Zyz19}
\by A.~V.~Zyza
\paper On generalized N.~Kovalevski equations in two problems of rigid body dynamics
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2019
\vol 29
\issue 1
\pages 73--83
\mathnet{http://mi.mathnet.ru/vuu667}
\crossref{https://doi.org/10.20537/vm190107}
\elib{https://elibrary.ru/item.asp?id=37416684}
Linking options:
  • https://www.mathnet.ru/eng/vuu667
  • https://www.mathnet.ru/eng/vuu/v29/i1/p73
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:274
    Full-text PDF :169
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024