Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2019, Volume 29, Issue 1, Pages 61–72
DOI: https://doi.org/10.20537/vm190106
(Mi vuu666)
 

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

Pseudospectral method for second-order autonomous nonlinear differential equations

L. A. Nhatab

a Tan Trao University, Tuyen Quang, 22227, Vietnam
b Peoples' Friendship University of Russia (RUDN University), ul. Miklukho-Maklaya, 6, Moscow, 117198, Russia
Full-text PDF (322 kB) Citations (2)
References:
Abstract: Autonomous nonlinear differential equations constituted a system of ordinary differential equations, which often applied in different areas of mechanics, quantum physics, chemical engineering science, physical science, and applied mathematics. It is assumed that the second-order autonomous nonlinear differential equations have the types ${u}''({x}) - {u}'({x}) = {f}[{u}({x})]$ and ${u}''({x}) + {f}[{u}({x})]{u}'({x}) + {u}({x}) = 0$ on the range $[-1, 1]$ with the boundary values ${u}[-1]$ and ${u}[1]$ provided. We use the pseudospectral method based on the Chebyshev differentiation matrix with Chebyshev–Gauss–Lobatto points to solve these problems. Moreover, we build two new iterative procedures to find the approximate solutions. In this paper, we use the programming language Mathematica version 10.4 to represent the algorithms, numerical results and figures. In the numerical results, we apply the well-known Van der Pol oscillator equation and gave good results. Therefore, they will be able to be applied to other nonlinear systems such as the Rayleigh equations, the Lienard equations, and the Emden–Fowler equations.
Keywords: pseudospectral method, Chebyshev differentiation matrix, Chebyshev polynomial, autonomous equations, nonlinear differential equations, Van der Pol oscillator.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation
The publication has been prepared with the support of the “RUDN University Program 5-100”.
Received: 25.02.2019
Bibliographic databases:
Document Type: Article
UDC: 519.624
MSC: 34B15, 65D25
Language: English
Citation: L. A. Nhat, “Pseudospectral method for second-order autonomous nonlinear differential equations”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:1 (2019), 61–72
Citation in format AMSBIB
\Bibitem{Nha19}
\by L.~A.~Nhat
\paper Pseudospectral method for second-order autonomous nonlinear differential equations
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2019
\vol 29
\issue 1
\pages 61--72
\mathnet{http://mi.mathnet.ru/vuu666}
\crossref{https://doi.org/10.20537/vm190106}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000468309400006}
\elib{https://elibrary.ru/item.asp?id=37416683}
Linking options:
  • https://www.mathnet.ru/eng/vuu666
  • https://www.mathnet.ru/eng/vuu/v29/i1/p61
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:313
    Full-text PDF :207
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024