Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2019, Volume 29, Issue 1, Pages 29–39
DOI: https://doi.org/10.20537/vm190103
(Mi vuu663)
 

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

On one mathematical model in elastic stability theory

A. S. Zapov

Yaroslavl State University, ul. Sovetskaya, 14, Yaroslavl, 150003, Russia
Full-text PDF (185 kB) Citations (2)
References:
Abstract: We consider a boundary-value problem for the nonlinear evolution partial differential equation, given in renormalized form. This problem appears in rotary system mechanics and describes the transverse vibrations of the rotating rotor of a constant cross-section from a viscoelastic material whose ends are pivotally fixed. The question of the stability of the zero equilibrium state is studied, the critical value of the rotor speed is found, above which continuous oscillations occur. Exact solutions of the boundary-value problem are found in the form of single-mode functions with respect to the spatial variable and functions periodic in time. The stability conditions for such solutions are derived, and in some cases an analysis of the stability conditions is given. The paper shows the absence of multimode time-periodic solutions. The basic and important (from an applied point of view) particular cases of this nonlinear boundary-value problem are analyzed. All the results of the analysis of a nonlinear boundary-value problem are analytical. Their conclusion is based on the qualitative theory of infinite-dimensional dynamical systems.
Keywords: nonlinear evolution equation, stability, oscillations of rotor systems, periodic solutions.
Received: 24.09.2018
Bibliographic databases:
Document Type: Article
UDC: 517.957
MSC: 35B10, 35B05
Language: Russian
Citation: A. S. Zapov, “On one mathematical model in elastic stability theory”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:1 (2019), 29–39
Citation in format AMSBIB
\Bibitem{Zap19}
\by A.~S.~Zapov
\paper On one mathematical model in elastic stability theory
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2019
\vol 29
\issue 1
\pages 29--39
\mathnet{http://mi.mathnet.ru/vuu663}
\crossref{https://doi.org/10.20537/vm190103}
\elib{https://elibrary.ru/item.asp?id=37416679}
Linking options:
  • https://www.mathnet.ru/eng/vuu663
  • https://www.mathnet.ru/eng/vuu/v29/i1/p29
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024