Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2019, Volume 29, Issue 1, Pages 3–18
DOI: https://doi.org/10.20537/vm190101
(Mi vuu661)
 

MATHEMATICS

Bifurcation study of transition to chaos in the oscillatory system of motion of a plate in a liquid

T.A. Gurina

Moscow Aviation Institute (National Research University), Volokolamskoe shosse, 4, Moscow, 125993, Russia
References:
Abstract: We consider the model of chaotic motion of a plate in a viscous fluid, described by an oscillatory system of three ordinary differential equations with a quadratic nonlinearity. In the course of the bifurcation study of singular points of the system, maps of the types of singular points are constructed and a surface equation is found in the space of dissipation and circulation parameters on which the Andronov–Hopf bifurcation of the limit cycle creation takes place. With a further change in the parameters near the Andronov–Hopf surface, cascades of the period doubling doubling of the Feigenbaum cycle and the Sharkovsky subharmonic cascades, ending with the creation of a cycle of period three, are found. Expressions are obtained for saddle numbers of the saddle–node and two saddle-foci and their plots are plotted in the parameter space. It is shown that homoclinic cascades of bifurcations are realized in the system with the destruction of homoclinic trajectories of saddle–foci. The existence of homoclinic trajectories of saddle-foci is proved by a numerical-analytical method. The graphs of the largest Lyapunov exponent and the bifurcation diagrams show that when the dissipation coefficients change, the system switches to chaos in several stages.
Keywords: motion of a body in a liquid, singular point, limit cycle, homoclinic trajectory, cascade of bifurcations, attractor, chaos, largest Lyapunov exponent.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00820_а
This work was supported by the Russian Foundation for Basic Research (project no. 18-01-00820).
Received: 17.10.2018
Bibliographic databases:
Document Type: Article
UDC: 517.938, 531.36, 534.1
MSC: 34C15, 34C23, 34C25
Language: Russian
Citation: T.A. Gurina, “Bifurcation study of transition to chaos in the oscillatory system of motion of a plate in a liquid”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:1 (2019), 3–18
Citation in format AMSBIB
\Bibitem{Gur19}
\by T.A.~Gurina
\paper Bifurcation study of transition to chaos in the oscillatory system of motion of a plate in a liquid
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2019
\vol 29
\issue 1
\pages 3--18
\mathnet{http://mi.mathnet.ru/vuu661}
\crossref{https://doi.org/10.20537/vm190101}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3963640}
\zmath{https://zbmath.org/?q=an:07213765}
\elib{https://elibrary.ru/item.asp?id=37416675}
Linking options:
  • https://www.mathnet.ru/eng/vuu661
  • https://www.mathnet.ru/eng/vuu/v29/i1/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024