Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2018, Volume 28, Issue 4, Pages 549–564
DOI: https://doi.org/10.20537/vm180408
(Mi vuu656)
 

This article is cited in 5 scientific papers (total in 5 papers)

MECHANICS

On evolution of the planet's obliquity in a non-resonant planetary system

P. S. Krasil'nikova, O. M. Podviginab

a Moscow Aviation Institute, Volokolamskoe shosse, 4, Moscow, 125993, Russia
b Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, ul. Profsoyuznaya, 84/32, Moscow, 117997, Russia
Full-text PDF (367 kB) Citations (5)
References:
Abstract: We investigate the evolution of the obliquity of a planet in the gravitational field of a star and other planets comprising a planetary system. The planet is assumed to be an axially symmetric rigid body ($A=B$). This planet and other planets move around the star along Keplerian ellipses with frequencies $\omega$ and $\omega_2,\ldots,\omega_N$, respectively, where $N$ is the number of celestial bodies (material points) affecting the planet.
We derive Hamiltonian for the problem in the Depri–Andoyer variables in the satellite approximation. The Hamiltonian is averaged over the fast variables of the rotational and orbital motions, assuming that the motions are not resonant. The averaged Hamiltonian involves, in addition to the classic parameters, parameters $D_i$, that can be considered as functionals on the family of orbits of celestial bodies comprising the planetary system. The averaged Hamiltonian admits separation of variables, which implies the existence of three first integrals in involution. Regarding the gravitational torques of the other planets as small perturbations, we obtain from the energy integral of the averaged equations explicit approximate expressions for obliquity of the planet and its perturbed period of precession.
We investigate numerically the amplitude of oscillations of the planet's obliquity and it's perturbed period of precession for a planetary system involving a star, the planet itself and another massive planet (similar to Jupiter), whose orbits satisfy certain symmetry conditions and orbital planes intersect at angle $\gamma$.
Keywords: planet's rotation, planetary system, averaged equations, planet's obliquity, precession period.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00820_а
This work was supported by Russian Foundation for Basic Research under Grant 18-01-00820.
Received: 09.06.2018
Bibliographic databases:
Document Type: Article
UDC: 521.92, 517.928.7
MSC: 70F15, 70K65
Language: Russian
Citation: P. S. Krasil'nikov, O. M. Podvigina, “On evolution of the planet's obliquity in a non-resonant planetary system”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:4 (2018), 549–564
Citation in format AMSBIB
\Bibitem{KraPod18}
\by P.~S.~Krasil'nikov, O.~M.~Podvigina
\paper On evolution of the planet's obliquity in a non-resonant planetary system
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2018
\vol 28
\issue 4
\pages 549--564
\mathnet{http://mi.mathnet.ru/vuu656}
\crossref{https://doi.org/10.20537/vm180408}
\elib{https://elibrary.ru/item.asp?id=36873369}
Linking options:
  • https://www.mathnet.ru/eng/vuu656
  • https://www.mathnet.ru/eng/vuu/v28/i4/p549
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:322
    Full-text PDF :199
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024