Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2018, Volume 28, Issue 3, Pages 305–327
DOI: https://doi.org/10.20537/vm180304
(Mi vuu641)
 

This article is cited in 10 scientific papers (total in 10 papers)

MATHEMATICS

Embedding of an additive two-dimensional phenomenologically symmetric geometry of two sets of rank $(2,2)$ into two-dimensional phenomenologically symmetric geometries of two sets of rank $(3,2)$

V. A. Kyrov, G. G. Mikhailichenko

Gorno-Altaisk State University, ul. Lenkina, 1, Gorno-Altaisk, 649000, Russia
References:
Abstract: In this paper, the method of embedding is used to construct the classification of two-dimensional phenomenologically symmetric geometries of two sets (PS GTS) of rank $(3,2)$ from the previously known additive two-dimensional PS GTS of rank $(2,2)$ defined by a pair of functions $g^1=x+\xi$ and $g^2 = y+\eta$. The essence of this method consists in finding the functions defining the PS GTS of rank $(3,2)$ with respect to the functions $g^1=x+\xi$ and $g^2 = y+\eta$. In solving this problem, we use the fact that the two-dimensional PS GTS of rank $(3,2)$ admit groups of transformations of dimension 4, and the two-dimensional PS GTS of rank $(2,2)$ is of dimension $2$. It follows that the components of the operators of the Lie algebra of the transformation group of the two-dimensional PS GTS of rank $(3,2)$ are solutions of a system of eight linear differential equations of the first order in two variables. Investigating this system of equations, we arrive at possible expressions for systems of operators. Then, from the systems of operators, we select the operators that form Lie algebras. Then, applying the exponential mapping, we recover the actions of the Lie groups from the Lie algebras found. It is precisely these actions that specify the two-dimensional PS GTS of rank $(3,2)$.
Keywords: phenomenologically symmetric geometry of two sets, system of differential equations, Lie algebra, Lie transformation group.
Received: 07.06.2018
Bibliographic databases:
Document Type: Article
UDC: 517.912, 514.1
MSC: 39A05, 39B05
Language: Russian
Citation: V. A. Kyrov, G. G. Mikhailichenko, “Embedding of an additive two-dimensional phenomenologically symmetric geometry of two sets of rank $(2,2)$ into two-dimensional phenomenologically symmetric geometries of two sets of rank $(3,2)$”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:3 (2018), 305–327
Citation in format AMSBIB
\Bibitem{KyrMik18}
\by V.~A.~Kyrov, G.~G.~Mikhailichenko
\paper Embedding of an additive two-dimensional phenomenologically symmetric geometry of two sets of rank $(2,2)$ into two-dimensional phenomenologically symmetric geometries of two sets of rank~$(3,2)$
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2018
\vol 28
\issue 3
\pages 305--327
\mathnet{http://mi.mathnet.ru/vuu641}
\crossref{https://doi.org/10.20537/vm180304}
\elib{https://elibrary.ru/item.asp?id=35645984}
Linking options:
  • https://www.mathnet.ru/eng/vuu641
  • https://www.mathnet.ru/eng/vuu/v28/i3/p305
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:359
    Full-text PDF :161
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024