Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2018, Volume 28, Issue 1, Pages 22–35
DOI: https://doi.org/10.20537/vm180103
(Mi vuu617)
 

MATHEMATICS

Conformal connection with scalar curvature

L. N. Krivonosov, V. A. Luk'yanov

Nizhni Novgorod State Technical University, ul. Minina, 24, Nizhni Novgorod, 603950, Russia
References:
Abstract: A conformal connection with scalar curvature is defined as a generalization of a pseudo-Riemannian space of constant curvature. The curvature matrix of such connection is computed. It is proved that on a conformally connected manifold with scalar curvature there is a conformal connection with zero curvature matrix. We give a definition of a rescalable scalar and prove the existence of rescalable scalars on any manifold with conformal connection where a partition of unity exists. It is proved: 1) on any manifold with conformal connection and zero curvature matrix there exists a conformal connection with positive, negative and alternating scalar curvature; 2) on any conformally connected manifold there exists a global gauge-invariant metric; 3) on a hypersurface of a conformal space the induced conformal connection can not be of nonzero scalar curvature.
Keywords: manifold with conformal connection, connection matrix, curvature matrix of connection, gauge transformations, rescalable scalar, conformal connection with scalar curvature, partition of unity, gauge-invariant metric.
Received: 12.11.2017
Bibliographic databases:
Document Type: Article
UDC: 514.756.2
MSC: 53A30
Language: Russian
Citation: L. N. Krivonosov, V. A. Luk'yanov, “Conformal connection with scalar curvature”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:1 (2018), 22–35
Citation in format AMSBIB
\Bibitem{KriLuk18}
\by L.~N.~Krivonosov, V.~A.~Luk'yanov
\paper Conformal connection with scalar curvature
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2018
\vol 28
\issue 1
\pages 22--35
\mathnet{http://mi.mathnet.ru/vuu617}
\crossref{https://doi.org/10.20537/vm180103}
\elib{https://elibrary.ru/item.asp?id=32697213}
Linking options:
  • https://www.mathnet.ru/eng/vuu617
  • https://www.mathnet.ru/eng/vuu/v28/i1/p22
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:404
    Full-text PDF :179
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024