Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2017, Volume 27, Issue 4, Pages 481–498
DOI: https://doi.org/10.20537/vm170401
(Mi vuu603)
 

This article is cited in 7 scientific papers (total in 7 papers)

MATHEMATICS

On the property of integral separation of discrete-time systems

I. N. Banshchikovaa, S. N. Popovaba

a Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia
b N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620990, Russia
Full-text PDF (316 kB) Citations (7)
References:
Abstract: This paper is devoted to the study of the property of an integral separation of discrete time-varying linear systems. By definition, the system $x(m+1)=A(m)x(m),$ $m\in\mathbb N,$ $x\in\mathbb R^n,$ is called a system with integral separation if it has a basis of solutions $x^1(\cdot),\ldots,x^n(\cdot)$ such that for some $\gamma>0$, $a>1$ and all natural $m>s$, $i\leqslant n-1$ the inequalities
$$ \dfrac{\|x^{i+1}(m)\|}{\|x^{i+1}(s)\|}\geqslant\gamma a^{m-s}\dfrac{\|x^{i}(m)\|}{\|x^{i}(s)\|}. $$
are satisfied. The concept of integral separation of systems with continuous time was introduced by B.F. Bylov in 1965. The criteria for the integral separation of systems with discrete time are proved: reducibility to diagonal form with an integrally separated diagonal; stability and nonmultiplicity of Lyapunov exponents. The property of diagonalizability of discrete-time systems is also studied in detail. The evidence takes into account the specifics of these systems.
Keywords: discrete time-varying linear system, Lyapunov exponents, integral separability, diagonalizability.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00346_а
Received: 01.09.2017
Bibliographic databases:
Document Type: Article
UDC: 517.929.2
MSC: 39A06, 39A30
Language: Russian
Citation: I. N. Banshchikova, S. N. Popova, “On the property of integral separation of discrete-time systems”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:4 (2017), 481–498
Citation in format AMSBIB
\Bibitem{BanPop17}
\by I.~N.~Banshchikova, S.~N.~Popova
\paper On the property of integral separation of discrete-time systems
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2017
\vol 27
\issue 4
\pages 481--498
\mathnet{http://mi.mathnet.ru/vuu603}
\crossref{https://doi.org/10.20537/vm170401}
\elib{https://elibrary.ru/item.asp?id=32248452}
Linking options:
  • https://www.mathnet.ru/eng/vuu603
  • https://www.mathnet.ru/eng/vuu/v27/i4/p481
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:377
    Full-text PDF :193
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024