Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2017, Volume 27, Issue 3, Pages 326–343
DOI: https://doi.org/10.20537/vm170304
(Mi vuu592)
 

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

On the definition of uniform complete controllability

E. K. Makarova, S. N. Popovabc

a Institute of Mathematics, National Academy of Sciences of Belarus, ul. Surganova, 11, Minsk, 220072, Belarus
b N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620990, Russia
c Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia
Full-text PDF (356 kB) Citations (2)
References:
Abstract: We consider a linear control system
\begin{equation} \dot x=A(t)x+B(t)u,\quad t\in\mathbb R,\quad x\in\mathbb R^{n},\quad u\in\mathbb R^{m}, \tag{1} \end{equation}
under the assumption that the transition matrix $X(t,s)$ of the free system $\dot x = A(t)x$ is continuous with respect to $t$ and $s$ separately. We also suppose that on each interval $[\tau, \tau + \vartheta]$ of fixed length $\vartheta$ the normed space $Z_{\tau} $ of functions defined on this interval is given. A control $u$ on the interval $[\tau, \tau+\vartheta]$ is called admissible if $u\in Z_{\tau}$ and there exists the integral $\mathcal Q_{\tau}(u):=\int_{\tau}^{\tau+\vartheta}X(\tau,s)B(s)u(s)\,ds$. The vector subspace $U_{\tau}$ of the space $Z_{\tau}$ where the operator $\mathcal Q_{\tau}$ is defined is called the space of admissible controls for the system (1) on the interval $[\tau,\tau +\vartheta]$. We propose a definition of uniform complete controllability of the system (1) for the case of an arbitrary dependence of the space of admissible controls on the moment of the beginning of the control process. In this situation direct and dual necessary and sufficient conditions for uniform complete controllability of a linear system are obtained. It is shown that with proper choice of the space of admissible controls, the resulting conditions are equivalent to the classical definitions of uniform complete controllability.
Keywords: linear control systems, uniform complete controllability.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00346_а
Received: 22.06.2017
Bibliographic databases:
Document Type: Article
UDC: 517.977.1, 517.926
MSC: 93B05, 93C05
Language: Russian
Citation: E. K. Makarov, S. N. Popova, “On the definition of uniform complete controllability”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:3 (2017), 326–343
Citation in format AMSBIB
\Bibitem{MakPop17}
\by E.~K.~Makarov, S.~N.~Popova
\paper On the definition of uniform complete controllability
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2017
\vol 27
\issue 3
\pages 326--343
\mathnet{http://mi.mathnet.ru/vuu592}
\crossref{https://doi.org/10.20537/vm170304}
\elib{https://elibrary.ru/item.asp?id=30267244}
Linking options:
  • https://www.mathnet.ru/eng/vuu592
  • https://www.mathnet.ru/eng/vuu/v27/i3/p326
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:883
    Full-text PDF :199
    References:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024