Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2017, Volume 27, Issue 2, Pages 238–247
DOI: https://doi.org/10.20537/vm170207
(Mi vuu583)
 

MATHEMATICS

On the invariant sets and chaotic solutions of difference equations with random parameters

L. I. Rodinaa, A. H. Hammadyab

a Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia
b University of Al-Qadisiyah, ul. Babilon, 29, Al Diwaniyah, Iraq
References:
Abstract: We consider the probability model defined by the difference equation
\begin{equation} x_{n+1}=f(\omega_n,x_n), \quad (\omega_n,x_n)\in \Omega\times [a,b], \quad n=0,1,\dots, \tag{1} \end{equation}
where $\Omega$ is a given set with sigma-algebra of subsets $\widetilde{\mathfrak A},$ on which a probability measure $\widetilde \mu$ is defined. Let $\mu $ be a continuation of the measure $\widetilde \mu $ on the sigma-algebra generated by cylindrical sets. We study invariant sets and attractors of the equation with random parameters $(1).$ We receive conditions under which a given set is the maximal attractor. It is shown that, in invariant set $A\subseteq [a,b]$, there can be solutions, which are chaotic with probability one. It is observed in the case when exist an $m_i\in\mathbb N $ and sets $\Omega_i\subset\Omega $ such that $ \mu (\Omega_i)> 0, $ $i=1,2,$ and ${\rm cl}\, f^{m_1}(\Omega_1,A)\cap \,{\rm cl}\, f^{m_2}(\Omega_2,A)=\varnothing.$ It is shown, that solutions, chaotic with probability one, exist also in the case when the equation $(1)$ either has no any cycle, or all cycles are unstable with probability one. The results of the paper are illustrated by the example of a continuous-discrete probabilistic model of the dynamics of an isolated population; for this model we investigate different modes of dynamic development, which have certain differences from the modes of determined models and describe the processes in real physical systems more exhaustively.
Keywords: difference equations with random parameters, stable and unstable cycles, chaotic solutions.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00346_а
Received: 12.04.2017
Bibliographic databases:
Document Type: Article
UDC: 517.962.24
Language: Russian
Citation: L. I. Rodina, A. H. Hammady, “On the invariant sets and chaotic solutions of difference equations with random parameters”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:2 (2017), 238–247
Citation in format AMSBIB
\Bibitem{RodHam17}
\by L.~I.~Rodina, A.~H.~Hammady
\paper On the invariant sets and chaotic solutions of difference equations with random parameters
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2017
\vol 27
\issue 2
\pages 238--247
\mathnet{http://mi.mathnet.ru/vuu583}
\crossref{https://doi.org/10.20537/vm170207}
\elib{https://elibrary.ru/item.asp?id=29410195}
Linking options:
  • https://www.mathnet.ru/eng/vuu583
  • https://www.mathnet.ru/eng/vuu/v27/i2/p238
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025