Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2017, Volume 27, Issue 2, Pages 178–192
DOI: https://doi.org/10.20537/vm170203
(Mi vuu579)
 

This article is cited in 5 scientific papers (total in 5 papers)

MATHEMATICS

On uniform global attainability of two-dimensional linear systems with locally integrable coefficients

A. A. Kozlov, I. V. Ints

Polotsk State University, ul. Blokhina, 29, Novopolotsk, 211440, Belarus
Full-text PDF (323 kB) Citations (5)
References:
Abstract: We consider a linear time-varying control system with locally integrable and integrally bounded coefficients
\begin{equation} \dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0. \tag{1} \end{equation}
We construct control of the system $(1)$ as a linear feedback $u=U(t)x$ with measurable and bounded function $U(t)$, $t\geqslant 0$. For the closed-loop system
\begin{equation} \dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\geqslant 0, \tag{2} \end{equation}
we study a question about the conditions for its uniform global attainability. The last property of the system (2) means existence of a matrix $U(t)$, $t\geqslant 0$, that ensure equalities $X_U((k+1)T,kT)=H_k$ for the state-transition matrix $X_U(t,s)$ of the system (2) with fixed $T>0$ and arbitrary $k\in\mathbb N$, $\det H_k>0$. The problem is solved under the assumption of uniform complete controllability of the system (1), corresponding to the closed-loop system (2), i.e. assuming the existence of such $\sigma>0$ and $\gamma>0,$ that for any initial time $t_0\geqslant 0$ and initial condition $x(t_0)=x_0\in \mathbb{R}^n$ of the system (1) on the segment $[t_0,t_0+\sigma]$ there exists a measurable and bounded vector control $u=u(t),$ $\|u(t)\|\leqslant\gamma\|x_0\|,$ $t\in[t_0,t_0+\sigma],$ that transforms a vector of the initial state of the system into zero on that segment. It is proved that in two-dimensional case, i.e. when $n=2,$ the property of uniform complete controllability of the system (1) is a sufficient condition of uniform global attainability of the corresponding system (2).
Keywords: linear control system, uniform complete controllability, uniform global attainability.
Funding agency Grant number
National Academy of Sciences of Belarus, Ministry of Education of the Republic of Belarus подпрограмма 1, задание 1.2.01
Received: 30.05.2017
Bibliographic databases:
Document Type: Article
UDC: 517.926, 517.977
MSC: 34D08, 34H05, 93C15
Language: Russian
Citation: A. A. Kozlov, I. V. Ints, “On uniform global attainability of two-dimensional linear systems with locally integrable coefficients”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:2 (2017), 178–192
Citation in format AMSBIB
\Bibitem{KozInt17}
\by A.~A.~Kozlov, I.~V.~Ints
\paper On uniform global attainability of two-dimensional linear systems with locally integrable coefficients
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2017
\vol 27
\issue 2
\pages 178--192
\mathnet{http://mi.mathnet.ru/vuu579}
\crossref{https://doi.org/10.20537/vm170203}
\elib{https://elibrary.ru/item.asp?id=29410190}
Linking options:
  • https://www.mathnet.ru/eng/vuu579
  • https://www.mathnet.ru/eng/vuu/v27/i2/p178
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025