Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2017, Volume 27, Issue 2, Pages 162–177
DOI: https://doi.org/10.20537/vm170202
(Mi vuu578)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Regularization of the Pontryagin maximum principle in the problem of optimal boundary control for a parabolic equation with state constraints in Lebesgue spaces

A. A. Gorshkov, M. I. Sumin

Lobachevsky State University of Nizhni Novgorod, pr. Gagarina, 23, Nizhni Novgorod, 603950, Russia
Full-text PDF (341 kB) Citations (1)
References:
Abstract: A convex optimal control problem is considered for a parabolic equation with a strictly uniformly convex cost functional, with boundary control and distributed pointwise state constraints of equality and inequality type. The images of the operators that define pointwise state constraints are embedded into the Lebesgue space of integrable with $s$-th degree functions for $s\in(1,2)$. In turn, the boundary control belongs to Lebesgue space with summability index $r\in (2,+\infty)$. The main results of this work in the considered optimal control problem with pointwise state constraints are the two stable, with respect to perturbation of input data, sequential or, in other words, regularized principles: Lagrange principle in nondifferential form and Pontryagin maximum principle.
Keywords: optimal boundary control, parabolic equation, sequential optimization, dual regularization, stability, pointwise state constraint in the Lebesgue space, Lagrange principle, Pontryagin's maximum principle.
Funding agency Grant number
Russian Foundation for Basic Research 15-47-02294-р_поволжье_а
Ministry of Education and Science of the Russian Federation 1727
Received: 10.11.2016
Bibliographic databases:
Document Type: Article
UDC: 517.97
MSC: 47A52
Language: Russian
Citation: A. A. Gorshkov, M. I. Sumin, “Regularization of the Pontryagin maximum principle in the problem of optimal boundary control for a parabolic equation with state constraints in Lebesgue spaces”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:2 (2017), 162–177
Citation in format AMSBIB
\Bibitem{GorSum17}
\by A.~A.~Gorshkov, M.~I.~Sumin
\paper Regularization of the Pontryagin maximum principle in the problem of optimal boundary control for a parabolic equation with state constraints in Lebesgue spaces
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2017
\vol 27
\issue 2
\pages 162--177
\mathnet{http://mi.mathnet.ru/vuu578}
\crossref{https://doi.org/10.20537/vm170202}
\elib{https://elibrary.ru/item.asp?id=29410189}
Linking options:
  • https://www.mathnet.ru/eng/vuu578
  • https://www.mathnet.ru/eng/vuu/v27/i2/p162
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025