Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2017, Volume 27, Issue 1, Pages 60–68
DOI: https://doi.org/10.20537/vm170106
(Mi vuu569)
 

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

Methods of conformal mappings of polyhedra in $\mathbb{R}^3$

V. M. Radygin, I. S. Polyanskii

The Academy of Federal Security Guard Service of the Russian Federation, ul. Priborostroitel'naya, 35, Orel, 302034, Russia
Full-text PDF (695 kB) Citations (3)
References:
Abstract: Methods necessary to solve problems of conformal mapping of polyhedra in $\mathbb{R}^3$ are developed. The results are obtained with the use of quaternion algebra and geometric representations. The direct and inverse conformal mappings are defined: those of the upper half-space onto the unit ball, those of a ball crescent onto the dihedral angle and those of dihedral and polyhedral angles onto the upper half-space. Solutions to the direct and inverse problems of conformal mapping of the polyhedrons onto the upper half-space are found using the results obtained. The solution to the direct problem of conformal mapping is based on the results of the Christoffel–Schwarz theorem. The solution of the inverse problem is obtained by the method of successive conformal mappings. In general, the one-to-one mappings obtained are based on the fact that, by the Liouville theorem, all conformal diffeomorphisms of any area in the space are the Möbius transformations.
Keywords: conformal mapping, polyhedron, dihedral angle, polyhedral angle, upper half-space.
Received: 27.10.2016
Bibliographic databases:
Document Type: Article
UDC: 517.54
MSC: 30C20
Language: Russian
Citation: V. M. Radygin, I. S. Polyanskii, “Methods of conformal mappings of polyhedra in $\mathbb{R}^3$”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:1 (2017), 60–68
Citation in format AMSBIB
\Bibitem{RadPol17}
\by V.~M.~Radygin, I.~S.~Polyanskii
\paper Methods of conformal mappings of polyhedra in $\mathbb{R}^3$
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2017
\vol 27
\issue 1
\pages 60--68
\mathnet{http://mi.mathnet.ru/vuu569}
\crossref{https://doi.org/10.20537/vm170106}
\elib{https://elibrary.ru/item.asp?id=28808556}
Linking options:
  • https://www.mathnet.ru/eng/vuu569
  • https://www.mathnet.ru/eng/vuu/v27/i1/p60
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:704
    Full-text PDF :357
    References:68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024