Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2017, Volume 27, Issue 1, Pages 26–41
DOI: https://doi.org/10.20537/vm170103
(Mi vuu566)
 

This article is cited in 4 scientific papers (total in 4 papers)

MATHEMATICS

The regularized iterative Pontryagin maximum principle in optimal control. II. Optimization of a distributed system

F. A. Kuterin, M. I. Sumin

Lobachevsky State University of Nizhni Novgorod, pr. Gagarina, 23, Nizhni Novgorod, 603950, Russia
Full-text PDF (461 kB) Citations (4)
References:
Abstract: The stable sequential Pontryagin maximum principle or, in other words, the regularized Pontryagin maximum principle in iterative form is formulated for the optimal control problem of a linear parabolic equation with distributed, initial and boundary controls and operator semiphase equality constraint. The main difference between it and the classical Pontryagin maximum principle is that, firstly, it is formulated in terms of minimizing sequences, secondly, the iterative process occurs in dual space, and thirdly, it is resistant to error of raw data and gives a minimizing approximate solution in the sense of J. Warga. So it is a regularizing algorithm. The proof of the regularized Pontryagin maximum principle in iterative form is based on the dual regularization methods and iterative dual regularization. The results of model calculations of the concrete optimal control problem illustrating the work of the algorithm based on the regularized iterative Pontryagin maximum principle are presented. The problem of finding a control triple with minimal norm under a given equality constraint at the final instant of time or, in other words, the inverse final observation problem of finding a normal solution is used as a concrete model optimal control problem.
Keywords: optimal control, instability, iterative dual regularization, regularized iterative Lagrange principle, regularized iterative Pontryagin's maximum principle.
Funding agency Grant number
Russian Foundation for Basic Research 15-47-02294-р_поволжье_а
Ministry of Education and Science of the Russian Federation 1727
02.В.49.21.0003
Received: 05.11.2016
Bibliographic databases:
Document Type: Article
UDC: 517.95, 517.977
MSC: 47A52, 93C20
Language: Russian
Citation: F. A. Kuterin, M. I. Sumin, “The regularized iterative Pontryagin maximum principle in optimal control. II. Optimization of a distributed system”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:1 (2017), 26–41
Citation in format AMSBIB
\Bibitem{KutSum17}
\by F.~A.~Kuterin, M.~I.~Sumin
\paper The regularized iterative Pontryagin maximum principle in optimal control. II. Optimization of a distributed system
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2017
\vol 27
\issue 1
\pages 26--41
\mathnet{http://mi.mathnet.ru/vuu566}
\crossref{https://doi.org/10.20537/vm170103}
\elib{https://elibrary.ru/item.asp?id=28808553}
Linking options:
  • https://www.mathnet.ru/eng/vuu566
  • https://www.mathnet.ru/eng/vuu/v27/i1/p26
    Cycle of papers
    This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:3305
    Full-text PDF :198
    References:79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024