Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2017, Volume 27, Issue 1, Pages 17–25
DOI: https://doi.org/10.20537/vm170102
(Mi vuu565)
 

This article is cited in 4 scientific papers (total in 4 papers)

MATHEMATICS

Global extrema of the Gray Takagi function of Kobayashi and binary digital sums

O. E. Galkin, S. Yu. Galkina

Lobachevsky State University of Nizhni Novgorod, pr. Gagarina, 23, Nizhni Novgorod, 603950, Russia
Full-text PDF (392 kB) Citations (4)
References:
Abstract: The Gray Takagi function $\widetilde{T}(x)$ was defined by Kobayashi in 2002 for calculation of Gray code digital sums. By construction, the Gray Takagi function is similar to the Takagi function, described in 1903. Like the Takagi function, the Gray Takagi function of Kobayashi is continuous, but nowhere differentiable on the real axis. In this paper, we prove that the global maximum for the Gray Takagi function of Kobayashi is equal to $8/15$, and on the segment $[0;2]$ it is reached at those and only those points of the interval $(0;1)$, whose hexadecimal record contains only digits $4$ or $8$. We also show that the global minimum of $\widetilde{T}(x)$ is equal to $-8/15$, and on the segment $[0;2]$ it is reached at those and only those points of the interval $(1;2)$, whose hexadecimal record contains only digits $7$ or $\langle11\rangle$. In addition, we calculate the global minimum of the Gray Takagi function on the segment $[1/2;1]$ and get the value $-2/15$. We find global extrema and extreme points of the function $\log_2 x + \widetilde{T} (x)/x$. By using the results obtained, we get the best estimation of Gray code digital sums from Kobayashi's formula.
Keywords: continuous nowhere differentiable Gray Takagi function of Kobayashi, global maximum, global extremum, Gray code binary digital sums.
Funding agency Grant number
Russian Foundation for Basic Research 15-47-02294-р_поволжье_а
17-07-00488_а
Received: 01.02.2017
Bibliographic databases:
Document Type: Article
UDC: 517.518
MSC: 26A27, 26A06
Language: Russian
Citation: O. E. Galkin, S. Yu. Galkina, “Global extrema of the Gray Takagi function of Kobayashi and binary digital sums”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:1 (2017), 17–25
Citation in format AMSBIB
\Bibitem{GalGal17}
\by O.~E.~Galkin, S.~Yu.~Galkina
\paper Global extrema of the Gray Takagi function of Kobayashi and binary digital sums
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2017
\vol 27
\issue 1
\pages 17--25
\mathnet{http://mi.mathnet.ru/vuu565}
\crossref{https://doi.org/10.20537/vm170102}
\elib{https://elibrary.ru/item.asp?id=28808552}
Linking options:
  • https://www.mathnet.ru/eng/vuu565
  • https://www.mathnet.ru/eng/vuu/v27/i1/p17
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:596
    Full-text PDF :249
    References:75
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024