Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2016, Volume 26, Issue 4, Pages 535–542
DOI: https://doi.org/10.20537/vm160408
(Mi vuu559)
 

MATHEMATICS

The quasi-levels of the Dirac two-dimensional difference operator in a strip

T. S. Tinyukova

Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia
References:
Abstract: In the last decade, topological insulators have been actively studied in the physics literature. Topological insulator is a special type of material that is within the scope of an insulator and conducts electricity on the surface. Topological insulators have interesting physical properties, for example, the topological properties of this material can be stably maintained up to high temperatures. Topological insulators can be used in a wide variety of microelectronic devices ranging from very fast and efficient processors to topological quantum computers. The electron in topological insulators is described by the massless Dirac operator. Such operators in quasi-one-dimensional structures (for example, strips with different boundary conditions) are very interesting not only from a physical, but also from a mathematical point of view, but they are still poorly understood by mathematicians. In this article, we have found the eigenvalues of the Dirac difference operator for a potential of the form $ V_0 \delta_{n0}$. We have studied the quasi-levels (eigenvalues and resonances) of the operator in the case of small potentials.
Keywords: Dirac difference operator, resolution, spectrum, quasi-level, eigenvalues, resonance.
Received: 14.10.2016
Bibliographic databases:
Document Type: Article
UDC: 517.958, 530.145.6
MSC: 81Q10, 81Q15
Language: Russian
Citation: T. S. Tinyukova, “The quasi-levels of the Dirac two-dimensional difference operator in a strip”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:4 (2016), 535–542
Citation in format AMSBIB
\Bibitem{Tin16}
\by T.~S.~Tinyukova
\paper The quasi-levels of the Dirac two-dimensional difference operator in a strip
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2016
\vol 26
\issue 4
\pages 535--542
\mathnet{http://mi.mathnet.ru/vuu559}
\crossref{https://doi.org/10.20537/vm160408}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3604254}
\elib{https://elibrary.ru/item.asp?id=27673739}
Linking options:
  • https://www.mathnet.ru/eng/vuu559
  • https://www.mathnet.ru/eng/vuu/v26/i4/p535
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:342
    Full-text PDF :181
    References:61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024