Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2016, Volume 26, Issue 4, Pages 490–502
DOI: https://doi.org/10.20537/vm160404
(Mi vuu555)
 

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

Asymptotically stable sets of control systems with impulse actions

Ya. Yu. Larina, L. I. Rodina

Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia
Full-text PDF (295 kB) Citations (3)
References:
Abstract: We get sufficient conditions for asymptotic stability and weak asymptotic stability of a given set $\mathfrak M\doteq\bigl\{(t,x)\in [t_0,+\infty)\times\mathbb{R}^n: x\in M(t)\bigr\}$ with respect to the control system with impulse actions. We assume that the function $t\mapsto M(t)$ is continuous in the Hausdorff metric and for each $t \in [t_0,+\infty)$ the set $M(t)$ is nonempty and closed. Also, we obtain conditions under which for every solution $x(t,x_0)$ of the control system that leaves a sufficiently small neighborhood of the set $M(t_0)$ there exists an instant $t^*$ such that point $(t,x(t,x_0))$ belongs to $\mathfrak M$ for all $t\in[t^*,+\infty).$ Some of the statements presented here are analogues of the results obtained by E.A. Panasenko and E.L.Tonkov for systems with impulses, and in other statements the specificity of impulse actions is essentially used. The results of this paper are illustrated by the “pest–bioagents” model with impulse control and we assume that the addition of bioagents (natural enemies of the given pests) occur at fixed instants of time and the number of pests consumed on average by one biological agent per unit time is given by the trophic Holling function. We obtain conditions for asymptotic stability of the set $\mathfrak M=\bigl\{(t,x)\in \mathbb R^3_+: x_1\leqslant C_1\bigr\},$ where $x_1=y_1/K,$ $y_1$ is the size of the population of pests and $K$ is the capacity of environment.
Keywords: control systems with impulse actions, Lyapunov functions, asymptotically stable sets.
Received: 29.09.2016
Bibliographic databases:
Document Type: Article
UDC: 517.935, 517.938
Language: Russian
Citation: Ya. Yu. Larina, L. I. Rodina, “Asymptotically stable sets of control systems with impulse actions”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:4 (2016), 490–502
Citation in format AMSBIB
\Bibitem{LarRod16}
\by Ya.~Yu.~Larina, L.~I.~Rodina
\paper Asymptotically stable sets of control systems with impulse actions
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2016
\vol 26
\issue 4
\pages 490--502
\mathnet{http://mi.mathnet.ru/vuu555}
\crossref{https://doi.org/10.20537/vm160404}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3604250}
\elib{https://elibrary.ru/item.asp?id=27673735}
Linking options:
  • https://www.mathnet.ru/eng/vuu555
  • https://www.mathnet.ru/eng/vuu/v26/i4/p490
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:369
    Full-text PDF :181
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024