Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2016, Volume 26, Issue 3, Pages 312–323
DOI: https://doi.org/10.20537/vm160302
(Mi vuu541)
 

This article is cited in 6 scientific papers (total in 6 papers)

MATHEMATICS

Embedding of phenomenologically symmetric geometries of two sets of the rank $(N,2)$ into phenomenologically symmetric geometries of two sets of the rank $(N+1,2)$

V. A. Kyrov

Mathematics, Associate Professor, Gorno-Altaisk State University, ul. Lenkina, 1, Gorno-Altaisk, 649000, Russia
Full-text PDF (233 kB) Citations (6)
References:
Abstract: In this paper, we propose a new method of classification of metric functions of phenomenologically symmetric geometries of two sets. It is called the method of embedding, the essence of which is to find the metric functions of phenomenologically symmetric geometries of two high-rank sets for the given phenomenologically symmetric geometry of two sets having rank less by 1. By the previously known metric function of phenomenologically symmetric geometry of two sets of the rank $(2,2)$ the metric function of phenomenologically symmetric geometry of two sets of the rank $(3,2)$ is found, by the phenomenologically symmetric geometry of two sets of the rank $(3,2)$ we find phenomenologically symmetric geometry of two sets of the rank $(4,2)$. Then it is proved that embedding of phenomenologically symmetric geometry of two sets of the rank $(4,2)$ into the phenomenologically symmetric geometry of two sets of the rank $(5,2)$ is absent. To solve the problem we generate special functional equations which are reduced to well-known differential equations.
Keywords: phenomenologically symmetric geometry of two sets, metric function, differential equation.
Received: 21.06.2016
Bibliographic databases:
Document Type: Article
UDC: 517.912+514.1
MSC: 39A05, 39B05
Language: Russian
Citation: V. A. Kyrov, “Embedding of phenomenologically symmetric geometries of two sets of the rank $(N,2)$ into phenomenologically symmetric geometries of two sets of the rank $(N+1,2)$”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:3 (2016), 312–323
Citation in format AMSBIB
\Bibitem{Kyr16}
\by V.~A.~Kyrov
\paper Embedding of phenomenologically symmetric geometries of two sets of the rank $(N,2)$ into phenomenologically symmetric geometries of two sets of the rank~$(N+1,2)$
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2016
\vol 26
\issue 3
\pages 312--323
\mathnet{http://mi.mathnet.ru/vuu541}
\crossref{https://doi.org/10.20537/vm160302}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3558444}
\elib{https://elibrary.ru/item.asp?id=26726579}
Linking options:
  • https://www.mathnet.ru/eng/vuu541
  • https://www.mathnet.ru/eng/vuu/v26/i3/p312
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024