Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2016, Volume 26, Issue 2, Pages 221–230
DOI: https://doi.org/10.20537/vm160208
(Mi vuu533)
 

MATHEMATICS

On the sufficient condition of global scalarizability of linear control systems with locally integrable coefficients

A. A. Kozlov

Polotsk State University, ul. Blokhina, 29, Novopolotsk, 211440, Belarus
References:
Abstract: We consider a linear time-varying control system with locally integrable and integrally bounded coefficients
\begin{equation} \dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0. \tag{1} \end{equation}
We construct control of the system $(1)$ as a linear feedback $u=U(t)x$ with measurable and bounded function $U(t)$, $t\geqslant 0$. For the closed-loop system
\begin{equation} \dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\geqslant 0, \tag{2} \end{equation}
a definition of uniform global quasi-attainability is introduced. This notion is a weakening of the property of uniform global attainability. The last property means existence of matrix $U(t)$, $t\geqslant 0$, ensuring equalities $X_U((k+1)T,kT)=H_k$ for the state-transition matrix $X_U(t,s)$ of the system (2) with fixed $T>0$ and arbitrary $k\in\mathbb N$, $\det H_k>0$. We prove that uniform global quasi-attainability implies global scalarizability. The last property means that for any given locally integrable and integrally bounded scalar function $p=p(t)$, $t\geqslant0$, there exists a measurable and bounded function $U=U(t)$, $t\geqslant 0$, which ensures asymptotic equivalence of the system $(2)$ and the system of scalar type $\dot z=p(t)z$, $z\in\mathbb{R}^n$, $t\geqslant0$.
Keywords: linear control system, Lyapunov exponents, global scalarizability.
Funding agency Grant number
National Academy of Sciences of Belarus, Ministry of Education of the Republic of Belarus подпрограмма 1, задание 1.2.01
Received: 04.04.2016
Bibliographic databases:
Document Type: Article
UDC: 517.926, 517.977
MSC: 34D08, 34H05, 93C15
Language: Russian
Citation: A. A. Kozlov, “On the sufficient condition of global scalarizability of linear control systems with locally integrable coefficients”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:2 (2016), 221–230
Citation in format AMSBIB
\Bibitem{Koz16}
\by A.~A.~Kozlov
\paper On the sufficient condition of global scalarizability of linear control systems with locally integrable coefficients
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2016
\vol 26
\issue 2
\pages 221--230
\mathnet{http://mi.mathnet.ru/vuu533}
\crossref{https://doi.org/10.20537/vm160208}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3522926}
\elib{https://elibrary.ru/item.asp?id=26244781}
Linking options:
  • https://www.mathnet.ru/eng/vuu533
  • https://www.mathnet.ru/eng/vuu/v26/i2/p221
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024