Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2016, Volume 26, Issue 2, Pages 169–176
DOI: https://doi.org/10.20537/vm160203
(Mi vuu528)
 

This article is cited in 4 scientific papers (total in 4 papers)

MATHEMATICS

An example of a linear discrete system with unstable Lyapunov exponents

I. N. Banshchikova

Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia
Full-text PDF (216 kB) Citations (4)
References:
Abstract: We consider a discrete time-varying linear system
\begin{equation} x(m+1)=A(m)x(m),\quad m\in\mathbb Z,\quad x\in\mathbb R^n, \tag{1} \end{equation}
where $A(\cdot)$ is completely bounded on $\mathbb N$, i.e., $\sup_{m\in\mathbb N}\bigl(\|A(m)\|+\|A^{-1}(m)\|\bigr)<\infty$. Let $\lambda_1(A)\le\ldots\le\lambda_n(A)$ be the Lyapunov spectrum of the system (1). It is called stable if for any $\varepsilon>0$ there exists a $\delta>0$ such that for every completely bounded $n\times n$-matrix $R(\cdot)$, $\sup_{m\in\mathbb N}\|R(m)-E\|<\delta$, the inequality
$$\max_{j=1,\ldots,n}|\lambda_j(A)-\lambda_j(AR)|<\varepsilon $$
holds. We construct an example of the system (1) with unstable Lyapunov spectrum.
Keywords: discrete time-varying linear system, Lyapunov exponents, perturbations of coefficients.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00346_а
Received: 01.05.2016
Bibliographic databases:
Document Type: Article
UDC: 517.929.2
MSC: 39A06, 39A30
Language: Russian
Citation: I. N. Banshchikova, “An example of a linear discrete system with unstable Lyapunov exponents”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:2 (2016), 169–176
Citation in format AMSBIB
\Bibitem{Ban16}
\by I.~N.~Banshchikova
\paper An example of a linear discrete system with unstable Lyapunov exponents
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2016
\vol 26
\issue 2
\pages 169--176
\mathnet{http://mi.mathnet.ru/vuu528}
\crossref{https://doi.org/10.20537/vm160203}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3522921}
\elib{https://elibrary.ru/item.asp?id=26244776}
Linking options:
  • https://www.mathnet.ru/eng/vuu528
  • https://www.mathnet.ru/eng/vuu/v26/i2/p169
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:332
    Full-text PDF :186
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024