Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2016, Volume 26, Issue 2, Pages 160–168
DOI: https://doi.org/10.20537/vm160202
(Mi vuu527)
 

MATHEMATICS

Independence of interpolation error estimates by polynomials of $2k+1$ degree on angles in a triangle

V. S. Bazhenov, N. V. Latypova

Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia
References:
Abstract: The paper considers Birkhoff-type triangle-based interpolation of two-variable function by polynomials of $2k+1$ degree by set of two variables. Similar estimates are automatically transferred to error estimates of related finite element method. The approximation error estimates of derivatives for the given finite elements depend only on the decomposition diameter, and do not depend on triangulation angles. We show that obtained approximation error estimates for a function and its partial derivatives are unimprovable. Unimprovability is understood in a following sense: there exists a function from the given class and there exist absolute positive constants independent of triangulation such that for any nondegenerate triangle estimates from below are valid. In this work, a system of specific functions is offered for interpolation conditions. These functions allow to obtain of corresponding error estimates for definite partial derivatives.
Keywords: error of interpolation, piecewise polynomial function, triangulation, finite element method.
Received: 29.02.2016
Bibliographic databases:
Document Type: Article
UDC: 517.518
MSC: 41A05
Language: Russian
Citation: V. S. Bazhenov, N. V. Latypova, “Independence of interpolation error estimates by polynomials of $2k+1$ degree on angles in a triangle”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:2 (2016), 160–168
Citation in format AMSBIB
\Bibitem{BazLat16}
\by V.~S.~Bazhenov, N.~V.~Latypova
\paper Independence of interpolation error estimates by polynomials of $2k+1$ degree on angles in a triangle
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2016
\vol 26
\issue 2
\pages 160--168
\mathnet{http://mi.mathnet.ru/vuu527}
\crossref{https://doi.org/10.20537/vm160202}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3522920}
\elib{https://elibrary.ru/item.asp?id=26244775}
Linking options:
  • https://www.mathnet.ru/eng/vuu527
  • https://www.mathnet.ru/eng/vuu/v26/i2/p160
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:257
    Full-text PDF :153
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024