Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2016, Volume 26, Issue 1, Pages 121–140
DOI: https://doi.org/10.20537/vm160110
(Mi vuu523)
 

This article is cited in 8 scientific papers (total in 8 papers)

MATHEMATICS

Routing of displacements with dynamic constraints: “bottleneck problem”

A. G. Chentsovab, A. A. Chentsova

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620990, Russia
b Ural Federal University, ul. Mira, 19, Yekaterinburg, 620002, Russia
References:
Abstract: A complicated variant of the “bottleneck problem” is considered, namely: the problem of sequential visiting of megalopolises with preceding constraints. It is supposed that costs functions and “current” constraints with respect to displacements selection depend on the tasks list which is not completed at the moment. The variant of widely understood dynamic programming is proposed, it doesn't foresee (with preceding conditions) construction of the whole array of the Bellman function values; the special layers of this function realizing in its totality the partial array of its values are constructed (it helps to decrease the calculation complexity). An algorithm of the problem value (global extremum) calculation is proposed, the computer realization of which implies the existence of only one layer of the Bellman function in a memory of computer; the obtained value may be used for the heuristics testing. The optimal algorithm of “complete” solving of the route problem is constructed, within which all layers of the Bellman function are used at the route and trace constructing.
Keywords: route, trace, preceding conditions, dynamic programming.
Funding agency Grant number
Russian Science Foundation 14-11-00109
Received: 27.02.2016
Bibliographic databases:
Document Type: Article
UDC: 519.6
MSC: 05A05, 97N70, 97N80
Language: Russian
Citation: A. G. Chentsov, A. A. Chentsov, “Routing of displacements with dynamic constraints: “bottleneck problem””, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:1 (2016), 121–140
Citation in format AMSBIB
\Bibitem{CheChe16}
\by A.~G.~Chentsov, A.~A.~Chentsov
\paper Routing of displacements with dynamic constraints: ``bottleneck problem''
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2016
\vol 26
\issue 1
\pages 121--140
\mathnet{http://mi.mathnet.ru/vuu523}
\crossref{https://doi.org/10.20537/vm160110}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3485578}
\elib{https://elibrary.ru/item.asp?id=25681790}
Linking options:
  • https://www.mathnet.ru/eng/vuu523
  • https://www.mathnet.ru/eng/vuu/v26/i1/p121
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:390
    Full-text PDF :116
    References:79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024